scispace - formally typeset
Search or ask a question
Author

Christoph Stiller

Bio: Christoph Stiller is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Object detection & Computer science. The author has an hindex of 50, co-authored 281 publications receiving 14799 citations. Previous affiliations of Christoph Stiller include Volkswagen & RWTH Aachen University.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research, using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras and a high-precision GPS/IMU inertial navigation system.
Abstract: We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations, and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets, and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

7,153 citations

Proceedings ArticleDOI
05 Jun 2011
TL;DR: In this article, a sparse feature matcher and visual odometry algorithm are combined with a multi-view linking scheme for generating consistent 3D point clouds for online 3D reconstruction.
Abstract: Accurate 3d perception from video sequences is a core subject in computer vision and robotics, since it forms the basis of subsequent scene analysis. In practice however, online requirements often severely limit the utilizable camera resolution and hence also reconstruction accuracy. Furthermore, real-time systems often rely on heavy parallelism which can prevent applications in mobile devices or driver assistance systems, especially in cases where FPGAs cannot be employed. This paper proposes a novel approach to build 3d maps from high-resolution stereo sequences in real-time. Inspired by recent progress in stereo matching, we propose a sparse feature matcher in conjunction with an efficient and robust visual odometry algorithm. Our reconstruction pipeline combines both techniques with efficient stereo matching and a multi-view linking scheme for generating consistent 3d point clouds. In our experiments we show that the proposed odometry method achieves state-of-the-art accuracy. Including feature matching, the visual odometry part of our algorithm runs at 25 frames per second, while - at the same time - we obtain new depth maps at 3-4 fps, sufficient for online 3d reconstructions.

930 citations

Journal ArticleDOI
TL;DR: An overview of the autonomous vehicle is given and details on vision and radar-based perception, digital road maps and video-based self-localization, as well as motion planning in complex urban scenarios are presented.
Abstract: 125 years after Bertha Benz completed the first overland journey in automotive history, the Mercedes Benz S-Class S 500 INTELLIGENT DRIVE followed the same route from Mannheim to Pforzheim, Germany, in fully autonomous manner. The autonomous vehicle was equipped with close-to-production sensor hardware and relied solely on vision and radar sensors in combination with accurate digital maps to obtain a comprehensive understanding of complex traffic situations. The historic Bertha Benz Memorial Route is particularly challenging for autonomous driving. The course taken by the autonomous vehicle had a length of 103 km and covered rural roads, 23 small villages and major cities (e.g. downtown Mannheim and Heidelberg). The route posed a large variety of difficult traffic scenarios including intersections with and without traffic lights, roundabouts, and narrow passages with oncoming traffic. This paper gives an overview of the autonomous vehicle and presents details on vision and radar-based perception, digital road maps and video-based self-localization, as well as motion planning in complex urban scenarios.

783 citations

Journal ArticleDOI
24 Oct 2014
TL;DR: This contribution provides a review of fundamental goals, development and future perspectives of driver assistance systems, and examines the progress incented by the use of exteroceptive sensors such as radar, video, or lidar in automated driving in urban traffic and in cooperative driving.
Abstract: This contribution provides a review of fundamental goals, development and future perspectives of driver assistance systems. Mobility is a fundamental desire of mankind. Virtually any society strives for safe and efficient mobility at low ecological and economic costs. Nevertheless, its technical implementation significantly differs among societies, depending on their culture and their degree of industrialization. A potential evolutionary roadmap for driver assistance systems is discussed. Emerging from systems based on proprioceptive sensors, such as ABS or ESC, we review the progress incented by the use of exteroceptive sensors such as radar, video, or lidar. While the ultimate goal of automated and cooperative traffic still remains a vision of the future, intermediate steps towards that aim can be realized through systems that mitigate or avoid collisions in selected driving situations. Research extends the state-of-the-art in automated driving in urban traffic and in cooperative driving, the latter addressing communication and collaboration between different vehicles, as well as cooperative vehicle operation by its driver and its machine intelligence. These steps are considered important for the interim period, until reliable unsupervised automated driving for all conceivable traffic situations becomes available. The prospective evolution of driver assistance systems will be stimulated by several technological, societal and market trends. The paper closes with a view on current research fields.

716 citations

Journal ArticleDOI
TL;DR: A novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene is presented.
Abstract: In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry, and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar, or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow, and occupancy grids. For each of these cues, we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

453 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

30,811 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: The autonomous driving platform is used to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection, revealing that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world.
Abstract: Today, visual recognition systems are still rarely employed in robotics applications. Perhaps one of the main reasons for this is the lack of demanding benchmarks that mimic such scenarios. In this paper, we take advantage of our autonomous driving platform to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection. Our recording platform is equipped with four high resolution video cameras, a Velodyne laser scanner and a state-of-the-art localization system. Our benchmarks comprise 389 stereo and optical flow image pairs, stereo visual odometry sequences of 39.2 km length, and more than 200k 3D object annotations captured in cluttered scenarios (up to 15 cars and 30 pedestrians are visible per image). Results from state-of-the-art algorithms reveal that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world. Our goal is to reduce this bias by providing challenging benchmarks with novel difficulties to the computer vision community. Our benchmarks are available online at: www.cvlibs.net/datasets/kitti

11,283 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: This work introduces Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling, and exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity.
Abstract: Visual understanding of complex urban street scenes is an enabling factor for a wide range of applications. Object detection has benefited enormously from large-scale datasets, especially in the context of deep learning. For semantic urban scene understanding, however, no current dataset adequately captures the complexity of real-world urban scenes. To address this, we introduce Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling. Cityscapes is comprised of a large, diverse set of stereo video sequences recorded in streets from 50 different cities. 5000 of these images have high quality pixel-level annotations, 20 000 additional images have coarse annotations to enable methods that leverage large volumes of weakly-labeled data. Crucially, our effort exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity. Our accompanying empirical study provides an in-depth analysis of the dataset characteristics, as well as a performance evaluation of several state-of-the-art approaches based on our benchmark.

7,547 citations