scispace - formally typeset
Search or ask a question
Author

Christoph Wolf

Bio: Christoph Wolf is an academic researcher from Ewha Womans University. The author has contributed to research in topics: Perovskite (structure) & Electron paramagnetic resonance. The author has an hindex of 20, co-authored 44 publications receiving 4505 citations. Previous affiliations of Christoph Wolf include Seoul National University & Pohang University of Science and Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
04 Dec 2015-Science
TL;DR: Efficient organic-inorganic perovskite light-emitting diodes were made with nanograin crystals that lack metallic lead, which helped to confine excitons and avoid their quenching.
Abstract: Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

2,295 citations

Journal ArticleDOI
TL;DR: Efficient quasi-2D-structure perovskite light-emitting diodes are demonstrated by mixing a 3D-structured perovSkite material and a 2D- structures, which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.
Abstract: Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

524 citations

Journal ArticleDOI
TL;DR: This paper presents Functional Crystallization Center (FCC) results, which show the results of a successful crystallization experiment conducted at Kyung Hee University with real-time deposition of Na6(CO3)(SO4)2(SO3)2, which proved the ability of Na2SO4 to be converted to Na2CO3 by the FCC.
Abstract: J. H. Heo, D. H. Song, H. J. Han, Prof. S. H. Im Functional Crystallization Center (FCC) Department of Chemical Engineering Kyung Hee University 1732 Deogyeong-daero , Giheung-gu, Yongin-si , Gyeonggi-do 446-701 , Republic of Korea E-mail: imromy@khu.ac.kr S. Y. Kim, Prof. J. H. Kim Department of Physics Incheon National University 119 Academy-ro , Yeonsu-gu , Incheon 406-772 , Republic of Korea D. Kim, Dr. H. W. Shin, Prof. T. K. Ahn Department of Energy Science Sungkyunkwan University Seobu-ro 2066 , Jangan-gu , Suwon 440-746 , Republic of Korea C. Wolf, Prof. T.-W. Lee Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro , Nam-Gu, Pohang , Gyungbuk 790-784, Republic of Korea

432 citations

Journal ArticleDOI
TL;DR: The origins of the instability in PeLEDs are reviewed and the strategies to improve the stability of MHP materials and Pe LEDs are critically reviewed, such as A-site cation engineering, Ruddlesden-Popper phase, suppression of ion migration with additives and blocking layers, fabrication of uniform bulk polycrystalline MHP layers, and fabrication of stable MHP nanoparticles.
Abstract: Metal halide perovskites (MHPs) have numerous advantages as light emitters such as high photoluminescence quantum efficiency with a direct bandgap, very narrow emission linewidth, high charge-carrier mobility, low energetic disorder, solution processability, simple color tuning, and low material cost. Based on these advantages, MHPs have recently shown unprecedented radical progress (maximum current efficiency from 0.3 to 42.9 cd A-1 ) in the field of light-emitting diodes. However, perovskite light-emitting diodes (PeLEDs) suffer from intrinsic instability of MHP materials and instability arising from the operation of the PeLEDs. Recently, many researchers have devoted efforts to overcome these instabilities. Here, the origins of the instability in PeLEDs are reviewed by categorizing it into two types: instability of (i) the MHP materials and (ii) the constituent layers and interfaces in PeLED devices. Then, the strategies to improve the stability of MHP materials and PeLEDs are critically reviewed, such as A-site cation engineering, Ruddlesden-Popper phase, suppression of ion migration with additives and blocking layers, fabrication of uniform bulk polycrystalline MHP layers, and fabrication of stable MHP nanoparticles. Based on this review of recent advances, future research directions and an outlook of PeLEDs for display applications are suggested.

331 citations

Journal ArticleDOI
TL;DR: Organometal halide perovskite synaptic devices are fabricated; they emulate important working principles of a biological synapse, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, long-term Plasticity, and spike-timing dependent plasticity.
Abstract: Organometal halide perovskite synaptic devices are fabricated; they emulate important working principles of a biological synapse, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, long-term plasticity, and spike-timing dependent plasticity. These properties originate from possible ion migration in the ion-rich perovskite matrix. This work has extensive applicability and practical significance in neuromorphic electronics.

287 citations


Cited by
More filters
Journal ArticleDOI
14 Oct 2016-Science
TL;DR: This work shows that the small and oxidation-stable rubidium cation (Rb+) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties and achieved stabilized efficiencies of up to 21.6% on small areas.
Abstract: All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb + ) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average value, 20.2%) on small areas (and a stabilized 19.0% on a cell 0.5 square centimeters in area) as well as an electroluminescence of 3.8%. The open-circuit voltage of 1.24 volts at a band gap of 1.63 electron volts leads to a loss in potential of 0.39 volts, versus 0.4 volts for commercial silicon cells. Polymer-coated cells maintained 95% of their initial performance at 85°C for 500 hours under full illumination and maximum power point tracking.

3,034 citations

Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: In this article, the authors describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20.3 per cent, which is achieved by a new strategy for managing the compositional distribution in the device.
Abstract: Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1–3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4–8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively—still well behind the performance of organic LEDs10–12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device—an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display. A strategy for managing the compositional distribution in metal halide perovskite light-emitting diodes enables them to surpass 20% external quantum efficiency—a step towards their practical application in lighting and displays.

2,346 citations

Journal ArticleDOI
TL;DR: This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovSKite family for electronic, optical, and energy-based applications as well as fundamental research.
Abstract: Although known since the late 19th century, organic–inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic–inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

1,962 citations

Journal ArticleDOI
20 Nov 2015-Science
TL;DR: Heavy doped inorganic charge extraction layers in planar PSCs were used to achieve very rapid carrier extraction, even with 10- to 20-nanometer-thick layers, avoiding pinholes and eliminating local structural defects over large areas.
Abstract: The recent dramatic rise in power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) has triggered intense research worldwide. However, high PCE values have often been reached with poor stability at an illuminated area of typically less than 0.1 square centimeter. We used heavily doped inorganic charge extraction layers in planar PSCs to achieve very rapid carrier extraction, even with 10- to 20-nanometer-thick layers, avoiding pinholes and eliminating local structural defects over large areas. The robust inorganic nature of the layers allowed for the fabrication of PSCs with an aperture area >1 square centimeter that have a PCE >15%, as certified by an accredited photovoltaic calibration laboratory. Hysteresis in the current-voltage characteristics was eliminated; the PSCs were stable, with >90% of the initial PCE remaining after 1000 hours of light soaking.

1,936 citations