scispace - formally typeset
Search or ask a question
Author

Christophe Aucan

Bio: Christophe Aucan is an academic researcher from French Institute of Health and Medical Research. The author has contributed to research in topics: Plasmodium falciparum & Malaria. The author has an hindex of 6, co-authored 9 publications receiving 486 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Analyzing the isotypic distribution of the IgG response to conserved epitopes and P. falciparum blood-stage extract in 283 malaria-exposed individuals favors a protective role of IgG3 and IgG2, which may activate effector cells through FcγRIIA, and provides evidence for a blocking role for IgG4 in malarial infection and disease.
Abstract: There is accumulating evidence for a role of immunoglobulin G (IgG) in protection against malarial infection and disease. Only IgG1 and IgG3 are considered cytophilic and protective against P. falciparum, whereas IgG2 and IgG4 were thought to be neither and even to block protective mechanisms. However, no clear pattern of association between isotypes and protection has so far emerged. We analyzed the isotypic distribution of the IgG response to conserved epitopes and P. falciparum blood-stage extract in 283 malaria-exposed individuals whose occurrence of infection and malaria attack had been monitored for about 1 year. Logistic regression analyses showed that, at the end of the season of transmission, high levels of IgG2 to RESA and to MSP2 epitopes were associated with low risk of infection. Indeed, IgG2 is able to bind FcγRIIA in individuals possessing the H131 allele, and we showed that 70% of the study subjects had this allele. Also, high specific IgG4 levels were associated with an enhanced risk of infection and with a high risk of malaria attack. Moreover, specific IgG2 and IgG3 levels, as well as the IgG2/IgG4 and IgG3/IgG4 ratios, increased with the age of subjects, in parallel with the protection against infection and disease. IgG4 likely competes with cytophilic antibodies for antigen recognition and may therefore block cytotoxicity mediated by antibody-activated effector cells. In conclusion, these results favor a protective role of IgG3 and IgG2, which may activate effector cells through FcγRIIA, and provide evidence for a blocking role of IgG4 in malarial infection and disease.

176 citations

Journal ArticleDOI
TL;DR: Sib-pair linkage analyses between blood infection levels and chromosome 5q31-q33, which contains numerous candidate genes encoding immunological molecules indicate that the locus plays a central role in the control of parasitemia, and the identification of the gene is of major interest in understanding the mechanisms controlling P. falciparum Parasitemia.
Abstract: Plasmodium falciparum malaria remains a major cause of morbidity and mortality in many tropical countries, especially those in sub-Saharan Africa. Human genetic control of malaria infection is poorly understood; in particular, genes controlling P. falciparum blood infection levels remain to be identified. We recently evidenced the existence of complex genetic factors controlling blood infection levels in an urban population living in Burkina Faso. We performed, on 153 sibs from 34 families, sib-pair linkage analyses between blood infection levels and chromosome 5q31-q33, which contains numerous candidate genes encoding immunological molecules. Our results, obtained by means of the two-point Haseman-Elston (HE) method and a nonparametric (NP) approach, show linkage of parasitemia to D5S393 (P=.002) and D5S658 (P=.0004). Multipoint analyses confirmed linkage, with a peak close to D5S658 (P=.0013 and P=.0007 with the HE and NP methods, respectively). The heritability of the locus was .48, according to the two-point results, and .43, according to the multipoint results; this indicates that its variation accounted for approximately 45% of the variance of blood infection levels and that the locus plays a central role in the control of parasitemia. The identification of the gene is, therefore, of major interest in understanding the mechanisms controlling P. falciparum parasitemia.

144 citations

Journal ArticleDOI
TL;DR: The results confirm the importance of chromosome 5q31–q33 in the genetic control of PFBI levels and detect allelic association in the presence of linkage between blood infection levels and D5S487.
Abstract: Linkage and association between Plasmodium falciparum blood infection levels and chromosome 5q31–q33

62 citations

Journal ArticleDOI
TL;DR: There was a strong interaction between major effect and age, suggesting that the influence of the putative major gene may be more prominent in children than in adults, and it was found that blood parasite densities were correlated between sibs.
Abstract: The genetic control of blood infection levels in human malaria remains unclear. Case control studies have not demonstrated a strong association between candidate genes and blood parasite densities as opposed to surveys that have focused on severe malaria. As an alternative approach, we used segregation analyses to determine the genetic control of blood parasitemia. We surveyed 509 residents (53 pedigrees) in a rural area and 389 residents (41 pedigrees) in an urban area during 18 months. Each family was visited 20 times and 28 times in the urban area and in the rural area; the mean number of parasitemia measurements per subject was 12.1 in the town and 14.9 in the village. The intensity of transmission of Plasmodium falciparum was 8-fold higher in the rural area than in the urban area. Using the class D regressive model for both populations, we found that blood parasite densities were correlated between sibs. We obtained strong evidence for a major effect, but we found that the transmission of this major effect was not compatible with a simple Mendelian model, suggesting a more complex mode of inheritance. Moreover, there was a strong interaction between major effect and age, suggesting that the influence of the putative major gene may be more prominent in children than in adults. Further nonparametric linkage studies, such as sib pair analysis, that focus on children would help us better understand the genetic control of blood infection levels.

61 citations

Journal ArticleDOI
TL;DR: The results indicated that the IgG subclass responses against P. falciparum blood-stage antigens are partly influenced by host genetic factors, which have implications for immunoepidemiology and vaccine development.
Abstract: Host genes are thought to determine the immune response to malaria infection and the outcome. Cytophilic antibodies have been associated with protection, whereas noncytophilic antibodies against the same epitopes may block the protective activity of the protective ones. To assess the contribution of genetic factors to immunoglobulin G (IgG) subclass responses against conserved epitopes and Plasmodium falciparum blood-stage extracts, we analyzed the isotypic distribution of the IgG responses in 366 individuals living in two differently exposed areas in Burkina Faso. We used one-way analysis of variance and pairwise estimators to calculate sib-sib and parent-offspring correlation coefficients, respectively. Familial patterns of inheritance of IgG subclass responses to defined antigens and P. falciparum extracts appear to be similar in the two areas. We observed a sibling correlation for the IgG, IgG1, IgG2, IgG3, and IgG4 responses directed against ring-infected-erythrocyte surface antigen, merozoite surface protein 1 (MSP-1), MSP-2, and P. falciparum extract. Moreover, a parent-offspring correlation was found for several IgG subclass responses, including the IgG, IgG1, IgG2, IgG3, and IgG4 responses directed against conserved MSP-2 epitopes. Our results indicated that the IgG subclass responses against P. falciparum blood-stage antigens are partly influenced by host genetic factors. The localization and identification of these genes may have implications for immunoepidemiology and vaccine development.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.
Abstract: Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, α + thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.

1,002 citations

Journal ArticleDOI
TL;DR: The effect of urbanization on both the impact of malaria transmission and the concomitant improvements in access to preventative and curative measures is described.
Abstract: Many attempts have been made to quantify Africa's malaria burden but none has addressed how urbanization will affect disease transmission and outcome, and therefore mortality and morbidity estimates In 2003, 39% of Africa's 850 million people lived in urban settings; by 2030, 54% of Africans are expected to do so We present the results of a series of entomological, parasitological and behavioural meta-analyses of studies that have investigated the effect of urbanization on malaria in Africa We describe the effect of urbanization on both the impact of malaria transmission and the concomitant improvements in access to preventative and curative measures Using these data, we have recalculated estimates of populations at risk of malaria and the resulting mortality We find there were 1,068,505 malaria deaths in Africa in 2000 - a modest 67% reduction over previous iterations The public-health implications of these findings and revised estimates are discussed

523 citations

Journal ArticleDOI
TL;DR: Developments in genetics have allowed a more systematic study of the impact that the human genome and infectious disease have on each other, and have confirmed heritability of susceptibility to several infectious diseases.
Abstract: Before Robert Koch's work in the late nineteenth century, diseases such as tuberculosis and leprosy were widely believed to be inherited disorders. Heritability of susceptibility to several infectious diseases has been confirmed by studies in the twentieth century. Infectious diseases, old and new, continue to be an important cause of mortality worldwide. A greater understanding of disease processes is needed if more effective therapies and more useful vaccines are to be produced. As part of this effort, developments in genetics have allowed a more systematic study of the impact that the human genome and infectious disease have on each other.

456 citations

Journal ArticleDOI
TL;DR: Substantial evidence indicates that antibodies to Plasmodium falciparum merozoite antigens play a role in protection from malaria, although the precise targets and mechanisms mediating immunity remain unclear and the factors determining subclass responses in vivo are poorly understood.
Abstract: Substantial evidence indicates that antibodies to Plasmodium falciparum merozoite antigens play a role in protection from malaria, although the precise targets and mechanisms mediating immunity remain unclear. Different malaria antigens induce distinct immunoglobulin G (IgG) subclass responses, but the importance of different responses in protective immunity from malaria is not known and the factors determining subclass responses in vivo are poorly understood. We examined IgG and IgG subclass responses to the merozoite antigens MSP1-19 (the 19-kDa C-terminal region of merozoite surface protein 1), MSP2 (merozoite surface protein 2), and AMA-1 (apical membrane antigen 1), including different polymorphic variants of these antigens, in a longitudinal cohort of children in Papua New Guinea. IgG1 and IgG3 were the predominant subclasses of antibodies to each antigen, and all antibody responses increased in association with age and exposure without evidence of increasing polarization toward one subclass. The profiles of IgG subclasses differed somewhat for different alleles of MSP2 but not for different variants of AMA-1. Individuals did not appear to have a propensity to make a specific subclass response irrespective of the antigen. Instead, data suggest that subclass responses to each antigen are generated independently among individuals and that antigen properties, rather than host factors, are the major determinants of IgG subclass responses. High levels of AMA-1-specific IgG3 and MSP1-19-specific IgG1 were strongly predictive of a reduced risk of symptomatic malaria and high-density P. falciparum infections. However, no antibody response was significantly associated with protection from parasitization per se. Our findings have major implications for understanding human immunity and for malaria vaccine development and evaluation.

247 citations

Journal ArticleDOI
TL;DR: A highly polygenic basis for susceptibility to many common infectious diseases is indicated, with some emerging examples of interaction between variants of specific polymorphic host and pathogen genes.
Abstract: A genetic basis for interindividual variation in susceptibility to human infectious diseases has been indicated by twin, adoptee, pedigree, and candidate gene studies. This has led to the identification of a small number of strong genetic associations with common variants for malaria, HIV infection, and infectious prion diseases. Numerous other genes have shown less strong associations with these and some other infectious diseases, such as tuberculosis, leprosy, and persistent hepatitis viral infections. Many immunogenetic loci influence susceptibility to several infectious pathogens. Recent genetic linkage analyses of measures of infection as well as of infectious disease, including some genome-wide scans, have found convincing evidence of genetic linkage to chromosomal regions wherein susceptibility genes have yet to be identified. These studies indicate a highly polygenic basis for susceptibility to many common infectious diseases, with some emerging examples of interaction between variants of specific polymorphic host and pathogen genes.

244 citations