scispace - formally typeset
Search or ask a question
Author

Christophe Colin

Other affiliations: Mines ParisTech, Snecma, PSL Research University  ...read more
Bio: Christophe Colin is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Holocene & Glacial period. The author has an hindex of 41, co-authored 163 publications receiving 5806 citations. Previous affiliations of Christophe Colin include Mines ParisTech & Snecma.
Topics: Holocene, Glacial period, Illite, Monsoon, Water mass


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented the various types of microstructure of the Ti-6Al-4V alloy after post-fabrication heat treatments below or above the β transus.
Abstract: Selective laser melting (SLM) is a rapid manufacturing process that enables the buildup of very complex parts in short delays directly from powder beds. Due to the high laser beam energy during very short interaction times and the high solidification rates of the melting pool, the resulting microstructure is out-of-equilibrium and particularly textured. This type of as-fabricated microstructure may not satisfy the aeronautical criterion and requires post heat treatments. Optimized heat treatments are developed, in one side, to homogenize and form the stable phases α and β while preventing exaggerated grain growth. In the other side, heat treatment is investigated to relieve the thermal stresses appearing during cooling. This study is aimed at presenting the various types of microstructure of the Ti-6Al-4V alloy after postfabrication heat treatments below or above the β transus. Tensile tests are then carried out at room temperature in order to assess the effect of the microstructures on the mechanical properties. The fine as-fabricated microstructure presents high yield and ultimate strengths, whereas the ductility is well below the standard. A strong anisotropy of fracture between the two loading directions is noted, which is attributed to the manufacturing defects. Conventional and optimized heat treatments exhibit high yield and ultimate strengths while the ductility is significantly improved. This is due to a new optimization of the process parameters allowing drastic reduction of the number of defects. These two heat treatments enable now a choice of the morphology of the grains between columnar or equiaxial as a function of the type of loading.

921 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize existing clay mineralogical and geochemical data from similar to 1500 samples from the seafloor and surrounding rivers, deepwater mooring observation results, and high resolution glacial-cyclic clay mineralogy records from six high-quality sediment cores.

329 citations

Journal ArticleDOI
TL;DR: In this paper, the Nimonic 263 as-processed microstructure of the selective laser melting is presented, which is an innovative process that is very typical to additive manufacturing processes.
Abstract: This article aims at presenting the Nimonic 263 as-processed microstructure of the selective laser melting which is an innovative process. Because the melting pool is small and the scanning speed of the laser beam is relatively high, the as-processed microstructure is out-of-equilibrium and very typical to additive manufacturing processes. To match the industrial requirement, the microstructures are modified through heat treatments in order to either produce precipitation hardening or relieve the thermal stresses. Tensile tests at room temperature give rise to high mechanical properties close or above those presented by Wang et al. [1]. However, it is noted a strong anisotropy as a function of the building direction of the samples because of the columnar grain growth.

294 citations

Journal ArticleDOI
TL;DR: In this article, the results of a clay mineralogy study combined with major element geochemistry, strontium, neodymium and oxygen isotopes, and 14C AMS stratigraphy are reported for deep-sea gravity cores located in the Bay of Bengal (MD77-180) and the Andaman Sea (MD 77-169).

259 citations

Journal ArticleDOI
TL;DR: The results of clay mineralogy, major element geochemistry, and Sr and Nd isotopes in 93 argillaceous samples collected from drainage basins of the Pearl, Red, and Mekong rivers reveal different degrees of chemical weathering in Southeast Asia despite similar climate conditions across these regions as mentioned in this paper.
Abstract: [1] Results of clay mineralogy, major element geochemistry, and Sr and Nd isotopes in 93 argillaceous samples collected from drainage basins of the Pearl, Red, and Mekong rivers reveal different degrees of chemical weathering in Southeast Asia despite similar climate conditions across these regions. The kaolinite/illite ratio, illite chemistry index, and illite crystallinity can be used as indicators of chemical weathering intensity. These mineralogical proxies combined with the K2O/(Na2O + CaO) molar ratio, chemical index of alteration (CIA), and weathering trends observed from major element results indicate intensive silicate weathering in the Pearl River basin, moderate to intensive in the Mekong River basin, and moderate in the Red River basin. Although a significant modification of epsilon Nd(0) values in our riverine sediments during chemical weathering and transport is unlikely, Sr-87/Sr-86 ratios are controlled by various states of chemical weathering of high-Sr minerals such as plagioclase (rich in Na and Ca) with a linear decrease trend from the Pearl, Mekong, to Red river basins. Our results suggest that it is not the warm climate with heavy monsoon precipitation but tectonics playing the most significant role in controlling weathering and erosion processes in south China and Indochina Peninsula. Strong physical erosion caused by tectonic activities and river incision along the eastern margin of the Tibetan Plateau and along the Red River fault system is responsible for high contents of primary minerals in the lowlands of Red and Mekong river basins.

234 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: The state-of-the-art of additive manufacturing (AM) can be classified into three categories: direct digital manufacturing, free-form fabrication, or 3D printing as discussed by the authors.
Abstract: This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

4,055 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the complex relationship between additive manufacturing processes, microstructure and resulting properties for metals, and typical microstructures for additively manufactured steel, aluminium and titanium are presented.

2,837 citations

Journal ArticleDOI
TL;DR: In this article, a review of additive manufacturing (AM) techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy.
Abstract: Additive manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire or sheets in a process that proceeds layer by layer. Many techniques (using many different names) have been developed to accomplish this via melting or solid-state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Only a few alloys have been developed for commercial production, but recent efforts are presented as a path for the ongoing development of new materials for AM processes.

1,713 citations