scispace - formally typeset
Search or ask a question
Author

Christophe Galland

Bio: Christophe Galland is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Photon & Quantum dot. The author has an hindex of 26, co-authored 70 publications receiving 3392 citations. Previous affiliations of Christophe Galland include University of Stuttgart & University of Delaware.


Papers
More filters
Journal ArticleDOI
10 Nov 2011-Nature
TL;DR: In this article, the role of charging in photoluminescence quenching was investigated in colloidal nanocrystals, and two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics.
Abstract: Photoluminescence blinking—random switching between states of high (ON) and low (OFF) emissivities—is a universal property of molecular emitters found in dyes1, polymers2, biological molecules3 and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes and nanowires4, 5, 6. For the past 15 years, colloidal nanocrystals have been used as a model system to study this phenomenon5, 6. The occurrence of OFF periods in nanocrystal emission has been commonly attributed to the presence of an additional charge7, which leads to photoluminescence quenching by non-radiative recombination (the Auger mechanism)8. However, this ‘charging’ model was recently challenged in several reports9, 10. Here we report time-resolved photoluminescence studies of individual nanocrystal quantum dots performed while electrochemically controlling the degree of their charging, with the goal of clarifying the role of charging in blinking. We find that two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, in which lower photoluminescence intensities correlate with shorter photoluminescence lifetimes; and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics. We attribute B-type blinking to charge fluctuations in the electron-accepting surface sites. When unoccupied, these sites intercept ‘hot’ electrons before they relax into emitting core states. Both blinking mechanisms can be electrochemically controlled and completely suppressed by application of an appropriate potential.

612 citations

Journal Article
TL;DR: It is found that two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, in which lower photoluminescence intensities correlate with shorter photolumscence lifetimes; and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics.
Abstract: Photoluminescence blinking—random switching between states of high (ON) and low (OFF) emissivities—is a universal property of molecular emitters found in dyes, polymers, biological molecules and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes and nanowires. For the past 15 years, colloidal nanocrystals have been used as a model system to study this phenomenon. The occurrence of OFF periods in nanocrystal emission has been commonly attributed to the presence of an additional charge, which leads to photoluminescence quenching by non-radiative recombination (the Auger mechanism). However, this ‘charging’ model was recently challenged in several reports. Here we report time-resolved photoluminescence studies of individual nanocrystal quantum dots performed while electrochemically controlling the degree of their charging, with the goal of clarifying the role of charging in blinking. We find that two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, in which lower photoluminescence intensities correlate with shorter photoluminescence lifetimes; and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics. We attribute B-type blinking to charge fluctuations in the electron-accepting surface sites. When unoccupied, these sites intercept ‘hot’ electrons before they relax into emitting core states. Both blinking mechanisms can be electrochemically controlled and completely suppressed by application of an appropriate potential.

590 citations

Journal ArticleDOI
TL;DR: The emergence of a fast luminescence decay component under strong optical excitation indicates that Auger processes are partially responsible for inhibiting two-photon generation and suggests that carbon nanotubes could be used as a source of single photons for applications in quantum cryptography.
Abstract: We report the first observation of photon antibunching in the photoluminescence from single carbon nanotubes. The emergence of a fast luminescence decay component under strong optical excitation indicates that Auger processes are partially responsible for inhibiting two-photon generation. Additionally, the presence of exciton localization at low temperatures ensures that nanotubes emit photons predominantly one by one. The fact that multiphoton emission probability can be smaller than 5% suggests that carbon nanotubes could be used as a source of single photons for applications in quantum cryptography.

268 citations

Journal ArticleDOI
TL;DR: The optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements.
Abstract: The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas Here, we introduce a new model that also accounts for the dynamical nature of the plasmon-molecule interaction We thereby reveal an enhancement mechanism not considered before: dynamical backaction amplification of molecular vibrations We first map the system onto the canonical Hamiltonian of cavity optomechanics, in which the molecular vibration and the plasmon are parametrically coupled We express the vacuum optomechanical coupling rate for individual molecules in plasmonic 'hot-spots' in terms of the vibrational mode's Raman activity and find it to be orders of magnitude larger than for microfabricated optomechanical systems Remarkably, the frequency of commonly studied molecular vibrations can be comparable to or larger than the plasmon's decay rate Together, these considerations predict that an excitation laser blue-detuned from the plasmon resonance can parametrically amplify the molecular vibration, leading to a nonlinear enhancement of Raman emission that is not predicted by the conventional theory Our optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements It also provides a quantum mechanical framework to analyse plasmon-vibrational interactions in terms of molecular quantum optomechanics

227 citations

Journal ArticleDOI
TL;DR: It is found that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity, and it is demonstrated that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal.
Abstract: Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes.

212 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
01 Jul 2017
TL;DR: A new architecture for a fully optical neural network is demonstrated that enables a computational speed enhancement of at least two orders of magnitude and three order of magnitude in power efficiency over state-of-the-art electronics.
Abstract: Artificial Neural Networks have dramatically improved performance for many machine learning tasks. We demonstrate a new architecture for a fully optical neural network that enables a computational speed enhancement of at least two orders of magnitude and three orders of magnitude in power efficiency over state-of-the-art electronics.

1,955 citations

Journal ArticleDOI
TL;DR: In this article, the time dependence of ρ11, ρ22 and ρ12 under steady-state conditions was analyzed under a light field interaction V = -μ12Ee iωt + c.c.
Abstract: (b) Write out the equations for the time dependence of ρ11, ρ22, ρ12 and ρ21 assuming that a light field interaction V = -μ12Ee iωt + c.c. couples only levels |1> and |2>, and that the excited levels exhibit spontaneous decay. (8 marks) (c) Under steady-state conditions, find the ratio of populations in states |2> and |3>. (3 marks) (d) Find the slowly varying amplitude ̃ ρ 12 of the polarization ρ12 = ̃ ρ 12e iωt . (6 marks) (e) In the limiting case that no decay is possible from intermediate level |3>, what is the ground state population ρ11(∞)? (2 marks) 2. (15 marks total) In a 2-level atom system subjected to a strong field, dressed states are created in the form |D1(n)> = sin θ |1,n> + cos θ |2,n-1> |D2(n)> = cos θ |1,n> sin θ |2,n-1>

1,872 citations

Journal ArticleDOI
28 Jan 2020-ACS Nano
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Abstract: The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

1,768 citations