scispace - formally typeset
Search or ask a question
Author

Christophe Magnan

Bio: Christophe Magnan is an academic researcher from University of Paris. The author has contributed to research in topics: Insulin & Insulin resistance. The author has an hindex of 46, co-authored 168 publications receiving 7429 citations. Previous affiliations of Christophe Magnan include Complutense University of Madrid & Paris Diderot University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that GRP78 inhibits both insulin-dependent and ER stress-dependent SREBP-1c proteolytic cleavage and explain the role of ER stress in hepatic steatosis in obese rodents.
Abstract: Hepatic steatosis is present in insulin-resistant obese rodents and is concomitant with active lipogenesis. Hepatic lipogenesis depends on the insulin-induced activation of the transcription factor SREBP-1c. Despite prevailing insulin resistance, SREBP-1c is activated in the livers of genetically and diet-induced obese rodents. Recent studies have reported the presence of an ER stress response in the livers of obese ob/ob mice. To assess whether ER stress promotes SREBP-1c activation and thus contributes to lipogenesis, we overexpressed the chaperone glucose-regulated protein 78 (GRP78) in the livers of ob/ob mice using an adenoviral vector. GRP78 overexpression reduced ER stress markers and inhibited SREBP-1c cleavage and the expression of SREBP-1c and SREBP-2 target genes. Furthermore, hepatic triglyceride and cholesterol contents were reduced, and insulin sensitivity improved, in GRP78-injected mice. These metabolic improvements were likely mediated by restoration of IRS-2 expression and tyrosine phosphorylation. Interestingly, GRP78 overexpression also inhibited insulin-induced SREBP-1c cleavage in cultured primary hepatocytes. These findings demonstrate that GRP78 inhibits both insulin-dependent and ER stress–dependent SREBP-1c proteolytic cleavage and explain the role of ER stress in hepatic steatosis in obese rodents.

641 citations

Journal ArticleDOI
TL;DR: The increase in free fatty acid flux resulting from increased lipolysis secondary to adipose-tissue insulin resistance induces or aggravates insulin resistance in liver and muscle through direct or indirect generation of metabolites, altering the insulin signalling pathway.
Abstract: Purpose of reviewDysregulation of free fatty acid metabolism is a key event responsible for insulin resistance and type 2 diabetes. According to the glucose-fatty acid cycle of Randle, preferential oxidation of free fatty acids over glucose plays a major role in insulin sensitivity and the metabolic

422 citations

Journal ArticleDOI
01 Apr 2008-Diabetes
TL;DR: The essential role of mTOR/S6K1 in orchestrating β-cell adaptation to hyperglycemia in type 2 diabetes is emphasized and it is likely that treatments based on mTOR inhibition will cause exacerbation of diabetes.
Abstract: OBJECTIVE— Mammalian target of rapamycin (mTOR) and its downstream target S6 kinase 1 (S6K1) mediate nutrient-induced insulin resistance by downregulating insulin receptor substrate proteins with subsequent reduced Akt phosphorylation. Therefore, mTOR/S6K1 inhibition could become a therapeutic strategy in insulin-resistant states, including type 2 diabetes. We tested this hypothesis in the Psammomys obesus ( P. obesus ) model of nutrition-dependent type 2 diabetes, using the mTOR inhibitor rapamycin. RESEARCH DESIGN AND METHODS— Normoglycemic and diabetic P. obesus were treated with 0.2 mg · kg −1 · day −1 i.p. rapamycin or vehicle, and the effects on insulin signaling in muscle, liver and islets, and on different metabolic parameters were analyzed. RESULTS— Unexpectedly, rapamycin worsened hyperglycemia in diabetic P. obesus without affecting glycemia in normoglycemic controls. There was a 10-fold increase of serum insulin in diabetic P. obesus compared with controls; rapamycin completely abolished this increase. This was accompanied by weight loss and a robust increase of serum lipids and ketone bodies. Rapamycin decreased muscle insulin sensitivity paralleled by increased glycogen synthase kinase 3β activity. In diabetic animals, rapamycin reduced β-cell mass by 50% through increased apoptosis. Rapamycin increased the stress-responsive c-Jun NH 2 -terminal kinase pathway in muscle and islets, which could account for its effect on insulin resistance and β-cell apoptosis. Moreover, glucose-stimulated insulin secretion and biosynthesis were impaired in islets treated with rapamycin. CONCLUSIONS— Rapamycin induces fulminant diabetes by increasing insulin resistance and reducing β-cell function and mass. These findings emphasize the essential role of mTOR/S6K1 in orchestrating β-cell adaptation to hyperglycemia in type 2 diabetes. It is likely that treatments based on mTOR inhibition will cause exacerbation of diabetes.

363 citations

Journal ArticleDOI
01 Mar 2009-Diabetes
TL;DR: It is demonstrated that mROS production is a necessary stimulus for glucose-induced insulin secretion by investigating the mitochondrial origin of ROS (mROS) as the triggering signal.
Abstract: OBJECTIVE: Insulin secretion involves complex events in which the mitochondria play a pivotal role in the generation of signals that couple glucose detection to insulin secretion. Studies on the mitochondrial generation of reactive oxygen species (ROS) generally focus on chronic nutrient exposure. Here, we investigate whether transient mitochondrial ROS production linked to glucose-induced increased respiration might act as a signal for monitoring insulin secretion. RESEARCH DESIGN AND METHODS: ROS production in response to glucose was investigated in freshly isolated rat islets. ROS effects were studied using a pharmacological approach and calcium imaging. RESULTS: Transient glucose increase from 5.5 to 16.7 mmol/l stimulated ROS generation, which was reversed by antioxidants. Insulin secretion was dose dependently blunted by antioxidants and highly correlated with ROS levels. The incapacity of beta-cells to secrete insulin in response to glucose with antioxidants was associated with a decrease in ROS production and in contrast to the maintenance of high levels of ATP and NADH. Then, we investigated the mitochondrial origin of ROS (mROS) as the triggering signal. Insulin release was mimicked by the mitochondrial-complex blockers, antimycin and rotenone, that generate mROS. The adding of antioxidants to mitochondrial blockers or to glucose was used to lower mROS reversed insulin secretion. Finally, calcium imaging on perifused islets using glucose stimulation or mitochondrial blockers revealed that calcium mobilization was completely reversed using the antioxidant trolox and that it was of extracellular origin. No toxic effects were present using these pharmacological approaches. CONCLUSIONS: Altogether, these complementary results demonstrate that mROS production is a necessary stimulus for glucose-induced insulin secretion.

312 citations

Journal ArticleDOI
TL;DR: Many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.
Abstract: Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity.

309 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

01 Apr 2012
TL;DR: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis as mentioned in this paper, and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration.
Abstract: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation.

6,268 citations

Journal ArticleDOI
13 Apr 2012-Cell
TL;DR: Recent advances in understanding of the mTOR pathway are reviewed and pharmacological approaches to treat human pathologies linked to mTOR deregulation are discussed.

5,792 citations

Journal ArticleDOI
01 Jul 2007-Diabetes
TL;DR: It is concluded that the LPS/CD14 system sets the tone of insulin sensitivity and the onset of diabetes and obesity and lowering plasma LPS concentration could be a potent strategy for the control of metabolic diseases.
Abstract: Diabetes and obesity are two metabolic diseases characterized by insulin resistance and a low-grade inflammation. Seeking an inflammatory factor causative of the onset of insulin resistance, obesity, and diabetes, we have identified bacterial lipopolysaccharide (LPS) as a triggering factor. We found that normal endotoxemia increased or decreased during the fed or fasted state, respectively, on a nutritional basis and that a 4-week high-fat diet chronically increased plasma LPS concentration two to three times, a threshold that we have defined as metabolic endotoxemia. Importantly, a high-fat diet increased the proportion of an LPS-containing microbiota in the gut. When metabolic endotoxemia was induced for 4 weeks in mice through continuous subcutaneous infusion of LPS, fasted glycemia and insulinemia and whole-body, liver, and adipose tissue weight gain were increased to a similar extent as in high-fat-fed mice. In addition, adipose tissue F4/80-positive cells and markers of inflammation, and liver triglyceride content, were increased. Furthermore, liver, but not whole-body, insulin resistance was detected in LPS-infused mice. CD14 mutant mice resisted most of the LPS and high-fat diet-induced features of metabolic diseases. This new finding demonstrates that metabolic endotoxemia dysregulates the inflammatory tone and triggers body weight gain and diabetes. We conclude that the LPS/CD14 system sets the tone of insulin sensitivity and the onset of diabetes and obesity. Lowering plasma LPS concentration could be a potent strategy for the control of metabolic diseases.

5,032 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The endoplasmic reticulum is the major site in the cell for protein folding and trafficking and is central to many cellular functions and is emerging as a potential site for the intersection of inflammation and metabolic disease.

2,411 citations