scispace - formally typeset
Search or ask a question
Author

Christophe Nguyen

Bio: Christophe Nguyen is an academic researcher from International Sleep Products Association. The author has contributed to research in topics: Rhizosphere & Soil water. The author has an hindex of 22, co-authored 56 publications receiving 3119 citations. Previous affiliations of Christophe Nguyen include Institut national de la recherche agronomique.


Papers
More filters
Journal ArticleDOI
TL;DR: Due to the importance of rhizodeposition in regulating ecosystem functioning, it is critical that future research focuses on resolving the quantitative importance of the different C and N fluxes operating in the rhizosphere and the ways in which these vary spatially and temporally.
Abstract: The loss of organic and inorganic carbon from roots into soil underpins nearly all the major changes that occur in the rhizosphere. In this review we explore the mechanistic basis of organic carbon and nitrogen flow in the rhizosphere. It is clear that C and N flow in the rhizosphere is extremely complex, being highly plant and environment dependent and varying both spatially and temporally along the root. Consequently, the amount and type of rhizodeposits (e.g. exudates, border cells, mucilage) remains highly context specific. This has severely limited our capacity to quantify and model the amount of rhizodeposition in ecosystem processes such as C sequestration and nutrient acquisition. It is now evident that C and N flow at the soil–root interface is bidirectional with C and N being lost from roots and taken up from the soil simultaneously. Here we present four alternative hypotheses to explain why high and low molecular weight organic compounds are actively cycled in the rhizosphere. These include: (1) indirect, fortuitous root exudate recapture as part of the root’s C and N distribution network, (2) direct re-uptake to enhance the plant’s C efficiency and to reduce rhizosphere microbial growth and pathogen attack, (3) direct uptake to recapture organic nutrients released from soil organic matter, and (4) for inter-root and root–microbial signal exchange. Due to severe flaws in the interpretation of commonly used isotopic labelling techniques, there is still great uncertainty surrounding the importance of these individual fluxes in the rhizosphere. Due to the importance of rhizodeposition in regulating ecosystem functioning, it is critical that future research focuses on resolving the quantitative importance of the different C and N fluxes operating in the rhizosphere and the ways in which these vary spatially and temporally.

1,247 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the mechanisms by which major rhizodeposits are released into the soil: production of root cap cells, secretion of mucilage, passive and controlled diffusion of root exudates.
Abstract: During their life, plant roots release organic compounds in their surrounding environment. This process, named rhizodeposition, is of ecological importance because (1) it is a loss of reduced C for the plant, (2) it is an input flux for the organic C pool of the soil and (3) it fuels the soil microflora, which is involved in the great majority of the biological activity of soils such as the nutrient and pollutant cycling or the dynamics of soil borne pathogens, for example. The present review first examines the mechanisms by which major rhizodeposits are released into the soil: production of root cap cells, secretion of mucilage, passive and controlled diffusion of root exudates. In a second part, results from tracer studies (43 articles) are analysed and values of C flux from the plant root into the soil are summarized. In average, 17% of the net C fixed by photosynthesis is lost by roots and recovered as rhizosphere respiration (12%) and soil residues (5%), which corresponds to 50% of the C exported by shoots to belowground. Finally, the paper reviews major factors that modify the partitioning of photoassimilates to the soil: microorganisms, nitrogen, soil texture and atmospheric CO2 concentration.

704 citations

Journal ArticleDOI
TL;DR: Homocaryotic mycelia obtained from spores of Laccaria bicolor S238 have been compared in vitro for their efficiency in solubilizing poorly soluble phosphates and there is very little room for improvement as the wild strain was shown to be one of the most efficientsolubilizers among the strains tested.
Abstract: Homocaryotic mycelia obtained from spores of Laccaria bicolor S238 have been compared in vitro for their efficiency in solubilizing poorly soluble phosphates. This could lead to genetic selection according to such criteria. However, there is very little room for improvement as the wild strain was shown to be one of the most efficient solubilizers among the strains tested. Twenty dicaryotic strains obtained by crossing the compatible homocaryons have also been compared and no clear heritability of this character has been found. The four phosphate salts used are most probably solubilized by the same mechanism which is polygenetically controlled

138 citations

Journal ArticleDOI
TL;DR: Comparing the impacts of 7-year applications of composted pig manure and ammonium nitrate on the structure and activity of the denitrifying community reveals that organic or mineral fertilizer applications could affect both structure andActivity of theDenitrifier community, with a possible influence on in situ N2O fluxes.

118 citations

Journal ArticleDOI
TL;DR: The results revealed that mucilage addition to the soil results in a strong impact on the activity of the denitrifying community and minor changes on its diversity.
Abstract: In order to understand the effect of the maize rhizosphere on denitrification, the diversity and the activity of the denitrifying community were studied in soil amended with maize mucilage. Diversity of the denitrifying community was investigated by polymerase chain reaction (PCR) amplification of total community DNA extracted from soils using gene fragments, encoding the nitrate reductase (narG) and the nitrous oxide reductase (nosZ), as molecular markers. To assess the underlying diversity, PCR products were cloned and 10 gene libraries were obtained for each targeted gene. Libraries containing 738 and 713 narG and nosZ clones, respectively, were screened by restriction fragment analysis, and grouped based on their RFLP (restriction fragment length polymorphism) patterns. In all, 117 and 171 different clone families have been identified for narG and nosZ and representatives of RFLP families containing at least two clones were sequenced. Rarefaction curves of both genes did not reach a clear saturation, indicating that analysis of an increasing number of clones would have revealed further diversity. Recovered NarG sequences were related to NarG from Actinomycetales and from Proteobacteria but most of them are not related to NarG from known bacteria. In contrast, most of the NosZ sequences were related to NosZ from alpha, beta, and gammaProteobacteria. Denitrifying activity was monitored by incubating the control and amended soils anaerobically in presence of acetylene. The N2O production rates revealed denitrifying activity to be greater in amended soil than in control soil. Altogether, our results revealed that mucilage addition to the soil results in a strong impact on the activity of the denitrifying community and minor changes on its diversity.

108 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent developments in rhizosphere research are discussed in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
Abstract: The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.

2,332 citations

Journal ArticleDOI
TL;DR: The plant microbiota emerges as a fundamental trait that includes mutualism enabled through diverse biochemical mechanisms, as revealed by studies on plant growth- Promoting and plant health-promoting bacteria.
Abstract: Plants host distinct bacterial communities on and inside various plant organs, of which those associated with roots and the leaf surface are best characterized. The phylogenetic composition of these communities is defined by relatively few bacterial phyla, including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. A synthesis of available data suggests a two-step selection process by which the bacterial microbiota of roots is differentiated from the surrounding soil biome. Rhizodeposition appears to fuel an initial substrate-driven community shift in the rhizosphere, which converges with host genotype–dependent finetuning of microbiota profiles in the selection of root endophyte assemblages. Substrate-driven selection also underlies the establishment of phyllosphere communities but takes place solely at the immediate leaf surface. Both the leaf and root microbiota contain bacteria that provide indirect pathogen protection, but root microbiota members appear to serve additional host functions through the acquisition of nutrients from soil for plant growth. Thus, the plant microbiota emerges as a fundamental trait that includes mutualism enabled through diverse biochemical mechanisms, as revealed by studies on plant growth–promoting and plant health–promoting bacteria.

2,169 citations

Journal ArticleDOI
TL;DR: The main functions of rhizosphere microorganisms and how they impact on health and disease are reviewed and several strategies to redirect or reshape the rhizospheric microbiome in favor of microorganisms that are beneficial to plant growth and health are highlighted.
Abstract: Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protective microbial shield and to overcome the innate plant defense mechanisms in order to cause disease. A third group of microorganisms that can be found in the rhizosphere are the true and opportunistic human pathogenic bacteria, which can be carried on or in plant tissue and may cause disease when introduced into debilitated humans. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, for the vast majority of rhizosphere microorganisms no knowledge exists. To enhance plant growth and health, it is essential to know which microorganism is present in the rhizosphere microbiome and what they are doing. Here, we review the main functions of rhizosphere microorganisms and how they impact on health and disease. We discuss the mechanisms involved in the multitrophic interactions and chemical dialogues that occur in the rhizosphere. Finally, we highlight several strategies to redirect or reshape the rhizosphere microbiome in favor of microorganisms that are beneficial to plant growth and health.

1,752 citations

Journal ArticleDOI
TL;DR: Although most soil microorganisms remain undescribed, the field is now poised to identify how to manipulate and manage the soil microbiome to increase soil fertility, improve crop production and improve the understanding of how terrestrial ecosystems will respond to environmental change.
Abstract: Soil microorganisms are clearly a key component of both natural and managed ecosystems. Despite the challenges of surviving in soil, a gram of soil can contain thousands of individual microbial taxa, including viruses and members of all three domains of life. Recent advances in marker gene, genomic and metagenomic analyses have greatly expanded our ability to characterize the soil microbiome and identify the factors that shape soil microbial communities across space and time. However, although most soil microorganisms remain undescribed, we can begin to categorize soil microorganisms on the basis of their ecological strategies. This is an approach that should prove fruitful for leveraging genomic information to predict the functional attributes of individual taxa. The field is now poised to identify how we can manipulate and manage the soil microbiome to increase soil fertility, improve crop production and improve our understanding of how terrestrial ecosystems will respond to environmental change.

1,720 citations

Journal ArticleDOI
TL;DR: The individual steps of plant colonization are described and the known mechanisms responsible for rhizosphere and endophytic competence are surveyed to better predict how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilisers or biocontrol agents.
Abstract: In both managed and natural ecosystems, beneficial plant-associated bacteria play a key role in supporting and/or increasing plant health and growth. Plant growth-promoting bacteria (PGPB) can be applied in agricultural production or for the phytoremediation of pollutants. However, because of their capacity to confer plant beneficial effects, efficient colonization of the plant environment is of utmost importance. The majority of plant-associated bacteria derives from the soil environment. They may migrate to the rhizosphere and subsequently the rhizoplane of their hosts before they are able to show beneficial effects. Some rhizoplane colonizing bacteria can also penetrate plant roots, and some strains may move to aerial plant parts, with a decreasing bacterial density in comparison to rhizosphere or root colonizing populations. A better understanding on colonization processes has been obtained mostly by microscopic visualisation as well as by analysing the characteristics of mutants carrying disfunctional genes potentially involved in colonization. In this review we describe the individual steps of plant colonization and survey the known mechanisms responsible for rhizosphere and endophytic competence. The understanding of colonization processes is important to better predict how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilisers or biocontrol agents.

1,705 citations