scispace - formally typeset
Search or ask a question
Author

Christopher A. T. Ferro

Other affiliations: University of Reading
Bio: Christopher A. T. Ferro is an academic researcher from University of Exeter. The author has contributed to research in topics: Extreme value theory & Forecast verification. The author has an hindex of 27, co-authored 55 publications receiving 4634 citations. Previous affiliations of Christopher A. T. Ferro include University of Reading.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a variety of diagnostic methods are used to determine how heat waves, heavy precipitation, drought, wind storms, and storm surges change between present (1961-90) and future (2071-2100) climate on the basis of regional climate model simulations produced by the PRUDENCE project.
Abstract: This paper presents an overview of changes in the extreme events that are most likely to affect Europe in forthcoming decades. A variety of diagnostic methods are used to determine how heat waves, heavy precipitation, drought, wind storms, and storm surges change between present (1961–90) and future (2071–2100) climate on the basis of regional climate model simulations produced by the PRUDENCE project. A summary of the main results follows. Heat waves – Regional surface warming causes the frequency, intensity and duration of heat waves to increase over Europe. By the end of the twenty first century, countries in central Europe will experience the same number of hot days as are currently experienced in southern Europe. The intensity of extreme temperatures increases more rapidly than the intensity of more moderate temperatures over the continental interior due to increases in temperature variability. Precipitation – Heavy winter precipitation increases in central and northern Europe and decreases in the south; heavy summer precipitation increases in north-eastern Europe and decreases in the south. Mediterranean droughts start earlier in the year and last longer. Winter storms – Extreme wind speeds increase between 45°N and 55°N, except over and south of the Alps, and become more north-westerly than cuurently. These changes are associated with reductions in mean sea-level pressure, leading to more North Sea storms and a corresponding increase in storm surges along coastal regions of Holland, Germany and Denmark, in particular. These results are found to depend to different degrees on model formulation. While the responses of heat waves are robust to model formulation, the magnitudes of changes in precipitation and wind speed are sensitive to the choice of regional model, and the detailed patterns of these changes are sensitive to the choice of the driving global model. In the case of precipitation, variation between models can exceed both internal variability and variability between different emissions scenarios.

1,317 citations

Journal ArticleDOI
TL;DR: This article proposed an automatic declustering scheme that is justified by an asymptotic result for the times between threshold exceedances, which relies on the extremal index and supports a bootstrap procedure for assessing the variability of estimates.
Abstract: Inference for clusters of extreme values of a time series typically requires the identification of independent clusters of exceedances over a high threshold. The choice of declustering scheme often has a significant effect on estimates of cluster characteristics. We propose an automatic declustering scheme that is justified by an asymptotic result for the times between threshold exceedances. The scheme relies on the extremal index, which we show may be estimated before declustering, and supports a bootstrap procedure for assessing the variability of estimates.

407 citations

Journal ArticleDOI
TL;DR: In this article, extreme value analysis of observed daily temperature anomalies from a new quasi-global data set indicates that extreme daily maximum and minimum temperatures (>98.5 or <1.5 percentile) have warmed for most regions since 1950.
Abstract: [1] Extreme value analysis of observed daily temperature anomalies from a new quasi-global data set indicates that extreme daily maximum and minimum temperatures (>98.5 or <1.5 percentile) have warmed for most regions since 1950. Changes in extreme anomalous daily temperatures are determined by fitting extreme value distributions with time-varying parameters. Changes in the distribution of anomaly exceedances above a high threshold are found to be statistically significant at the 10% level for most land areas when compared with a time-invariant distribution and with the unforced natural variability produced by a coupled climate model. The largest positive trends in the location parameter of the extreme distribution are found in Canada and Eurasia where daily maximum temperatures have typically warmed by 1 to 3°C since 1950. The total area exhibiting positive trends is significantly greater than can be attributed to unforced natural variability. For most regions, positive trend magnitudes are larger and cover a greater area for daily minimum temperatures than for maximum temperatures. The comparatively small areas of cooling are found to be consistent with unforced natural climate variability. The North Atlantic Oscillation (NAO) is found to have a significant influence on extreme winter daily temperatures for many areas, with a negative NAO of one standard deviation reducing expected extreme winter daily temperatures by ∼2°C over Eurasia but increasing temperatures over northeastern North America.

293 citations

Journal ArticleDOI
TL;DR: A sound and coordinated framework for verification of decadal hindcast experiments and provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with.
Abstract: Decadal predictions have a high profile in the climate science community and beyond, yet very little is known about their skill. Nor is there any agreed protocol for estimating their skill. This paper proposes a sound and coordinated framework for verification of decadal hindcast experiments. The framework is illustrated for decadal hindcasts tailored to meet the requirements and specifications of CMIP5 (Coupled Model Intercomparison Project phase 5). The chosen metrics address key questions about the information content in initialized decadal hindcasts. These questions are: (1) Do the initial conditions in the hindcasts lead to more accurate predictions of the climate, compared to un-initialized climate change projections? and (2) Is the prediction model’s ensemble spread an appropriate representation of forecast uncertainty on average? The first question is addressed through deterministic metrics that compare the initialized and uninitialized hindcasts. The second question is addressed through a probabilistic metric applied to the initialized hindcasts and comparing different ways to ascribe forecast uncertainty. Verification is advocated at smoothed regional scales that can illuminate broad areas of predictability, as well as at the grid scale, since many users of the decadal prediction experiments who feed the climate data into applications or decision models will use the data at grid scale, or downscale it to even higher resolution. An overall statement on skill of CMIP5 decadal hindcasts is not the aim of this paper. The results presented are only illustrative of the framework, which would enable such studies. However, broad conclusions that are beginning to emerge from the CMIP5 results include (1) Most predictability at the interannual-to-decadal scale, relative to climatological averages, comes from external forcing, particularly for temperature; (2) though moderate, additional skill is added by the initial conditions over what is imparted by external forcing alone; however, the impact of initialization may result in overall worse predictions in some regions than provided by uninitialized climate change projections; (3) limited hindcast records and the dearth of climate-quality observational data impede our ability to quantify expected skill as well as model biases; and (4) as is common to seasonal-to-interannual model predictions, the spread of the ensemble members is not necessarily a good representation of forecast uncertainty. The authors recommend that this framework be adopted to serve as a starting point to compare prediction quality across prediction systems. The framework can provide a baseline against which future improvements can be quantified. The framework also provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with, including adjustment of mean and conditional biases, and consideration of how to best approach forecast uncertainty.

292 citations

Journal ArticleDOI
TL;DR: In this paper, the seriality of extratropical cyclones in the Northern Hemisphere using a point-process approach was investigated and quantified using 6-h analyses of 850-mb relative vorticity derived from the NCEP-NCAR reanalysis.
Abstract: The clustering in time (seriality) of extratropical cyclones is responsible for large cumulative insured losses in western Europe, though surprisingly little scientific attention has been given to this important property. This study investigates and quantifies the seriality of extratropical cyclones in the Northern Hemisphere using a point-process approach. A possible mechanism for serial clustering is the time-varying effect of the large-scale flow on individual cyclone tracks. Another mechanism is the generation by one “parent” cyclone of one or more “offspring” through secondary cyclogenesis. A long cyclone-track database was constructed for extended October–March winters from 1950 to 2003 using 6-h analyses of 850-mb relative vorticity derived from the NCEP–NCAR reanalysis. A dispersion statistic based on the variance-to-mean ratio of monthly cyclone counts was used as a measure of clustering. It reveals extensive regions of statistically significant clustering in the European exit region of ...

234 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a new climatic drought index, the standardized precipitation evapotranspiration index (SPEI), is proposed, which combines multiscalar character with the capacity to include the effects of temperature variability on drought assessment.
Abstract: The authors propose a new climatic drought index: the standardized precipitation evapotranspiration index (SPEI). The SPEI is based on precipitation and temperature data, and it has the advantage of combining multiscalar character with the capacity to include the effects of temperature variability on drought assessment. The procedure to calculate the index is detailed and involves a climatic water balance, the accumulation of deficit/surplus at different time scales, and adjustment to a log-logistic probability distribution. Mathematically, the SPEI is similar to the standardized precipitation index (SPI), but it includes the role of temperature. Because the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer drought severity index (sc-PDSI). Time series of the three indices were compared for a set of observatories with different climate characteristics, located in different parts of the world. Under global warming conditions, only the sc-PDSI and SPEI identified an...

5,088 citations

Journal Article
TL;DR: In this paper, a documento: "Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita" voteato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamentsi Climatici (Intergovernmental Panel on Climate Change).
Abstract: Impatti, adattamento e vulnerabilita Le cause e le responsabilita dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto sui cambiamenti climatici.

3,979 citations

Book
01 Jun 2008
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources – their availability, quality, use and management. It takes into account current and projected regional key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and water. Its objectives are:

3,108 citations

Journal ArticleDOI
TL;DR: This article presented a review of climate change projections over the Mediterranean region based on the most recent and comprehensive ensembles of global and regional climate change simulations completed as part of international collaborative projects.

2,524 citations

Book Chapter
01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986-2005, unless otherwise stated.

2,253 citations