scispace - formally typeset
Search or ask a question
Author

Christopher B. Murray

Bio: Christopher B. Murray is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Nanocrystal & Quantum dot. The author has an hindex of 88, co-authored 336 publications receiving 54410 citations. Previous affiliations of Christopher B. Murray include Universal Display Corporation & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors use Stark spectroscopy to examine the nature of the excited states of CdSe nanocrystallites and find that the usual association of derivatives of absorption features with dipole moments and polarizabilities is problematic.
Abstract: We use Stark spectroscopy to examine the nature of the excited states of CdSe nanocrystallites. The Stark spectra we obtain are in the small coupling limit in which the changes induced by the electric field to the absorption spectrum are small compared to the transition linewidths. Within this limit, we theoretically examine the dependence of the line shape of Stark difference spectra on the linewidth of the transitions involved. For systems such as CdSe nanocrystallites, which have overlapping transitions coupled by the electric field, we find that the usual association of derivatives of absorption features with dipole moments and polarizabilities is problematic. We show that the Stark absorption spectrum of the CdSe nanocrystallites can be explained by polarizable and delocalized nonpolar excited states.

74 citations

Journal ArticleDOI
TL;DR: This work fabricates metasurfaces from rod-shaped nanoantennas tailored in size and spacing to demonstrate Au nanocrystal-based quarter-wave plates that operate with extreme bandwidths and provide high polarization conversion efficiencies in the near-to-mid infrared.
Abstract: We report a low-cost, large-area fabrication process using solution-based nanoimprinting and compact ligand exchange of colloidal Au nanocrystals to define anisotropic, subwavelength, plasmonic nanoinclusions for optical metasurfaces. Rod-shaped, Au nanocrystal-based nanoantennas possess strong, localized, plasmonic resonances able to control polarization. We fabricate metasurfaces from rod-shaped nanoantennas tailored in size and spacing to demonstrate Au nanocrystal-based quarter-wave plates that operate with extreme bandwidths and provide high polarization conversion efficiencies in the near-to-mid infrared.

74 citations

Journal ArticleDOI
TL;DR: The fabrication of multifunctional, smart nanoparticle systems by combining top-down fabrication and bottom-up self-assembly methods is reported, particularly, from a mixture of superparamagnetic Zn0.2Fe2.8O4 and plasmonic Au nanocrystals.
Abstract: Two crystalline nanocrystals with superparamagnetic and plasmonic properties form mechanically strong hybrid nanorods with dual functionality.

71 citations

Journal ArticleDOI
09 Feb 2015-ACS Nano
TL;DR: Time-resolved terahertz spectroscopy measurements were used to study the mobility and lifetime of PbSe nanocrystal films prepared with five common ligand-exchange reagents and found that films treated with different displacing ligands show more than an order of magnitude difference in the peak conductivities and a bifurcation of time dynamics.
Abstract: Colloidal semiconductor nanocrystals have been used as building blocks for electronic and optoelectronic devices ranging from field-effect transistors to solar cells. Properties of the nanocrystal films depend sensitively on the choice of capping ligand to replace the insulating synthesis ligands. Thus far, ligands leading to the best performance in transistors result in poor solar cell performance, and vice versa. To gain insight into the nature of this dichotomy, we used time-resolved terahertz spectroscopy measurements to study the mobility and lifetime of PbSe nanocrystal films prepared with five common ligand-exchange reagents. Noncontact terahertz spectroscopy measurements of conductivity were corroborated by contacted van der Pauw measurements of the same samples. The films treated with different displacing ligands show more than an order of magnitude difference in the peak conductivities and a bifurcation of time dynamics. Inorganic chalcogenide ligand exchanges with sodium sulfide (Na2S) or ammon...

69 citations

Journal ArticleDOI
TL;DR: Ferromagnetic resonance (FMR) techniques are used to investigate superparamagnetic cobalt nanoparticles (NP's) with different crystalline structures and sizes ranging from 4 to 9 nm in diameter as discussed by the authors.
Abstract: Ferromagnetic resonance (FMR) techniques are used to investigate superparamagnetic cobalt nanoparticles (NP's) with different crystalline structures and sizes ranging from 4 to 9 nm in diameter. Magnetic contributions from NC shape, crystallographic structure, defects, and surface structure are discussed. An independent-superparamagnetic-grain model is employed to simulate the FMR measurements. The results from both single crystalline and polycrystalline cobalt NP's reveal that a particle's effective anisotropy, and thus its magnetic properties, are extremely sensitive to internal structure as well as overall particle shape. Finally, surface chemical properties were found to yield unique FMR signatures for NP's at low temperatures.

69 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Abstract: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.

7,393 citations