scispace - formally typeset
Search or ask a question
Author

Christopher B. Murray

Bio: Christopher B. Murray is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Nanocrystal & Quantum dot. The author has an hindex of 88, co-authored 336 publications receiving 54410 citations. Previous affiliations of Christopher B. Murray include Universal Display Corporation & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
19 Nov 2014-ACS Nano
TL;DR: The superparamagnetic nanocrystals are successfully embedded into hand-wound inductors to function as inductor cores, and the ac magnetic properties of the nanocrystalline oxides are characterized.
Abstract: We investigate the size- and composition-dependent ac magnetic permeability of superparamagnetic iron oxide nanocrystals for radio frequency (RF) applications. The nanocrystals are obtained through high-temperature decomposition synthesis, and their stoichiometry is determined by Mossbauer spectroscopy. Two sets of oxides are studied: (a) as-synthesized magnetite-rich and (b) aged maghemite nanocrystals. All nanocrystalline samples are confirmed to be in the superparamagnetic state at room temperature by SQUID magnetometry. Through the one-turn inductor method, the ac magnetic properties of the nanocrystalline oxides are characterized. In magnetite-rich iron oxide nanocrystals, size-dependent magnetic permeability is not observed, while maghemite iron oxide nanocrystals show clear size dependence. The inductance, resistance, and quality factor of hand-wound inductors with a superparamagnetic composite core are measured. The superparamagnetic nanocrystals are successfully embedded into hand-wound inductors to function as inductor cores.

45 citations

Journal ArticleDOI
TL;DR: Small-angle neutron scattering (SANS) measurements from surfactant or poly(ethylene glycol) (PEG) coated gold nanorods in solution are reported, which quantitatively determine the location, structure, and composition of these surface layers, which provide a quantitative picture of the structure of grafted polymer and Surfactant layers on gold Nanorod surfaces which has implications for the fabrication of plasmonic and biomedical materials.
Abstract: The structure and size of ligands attached to the surfaces of gold nanorods, such as adsorbed surfactants or grafted polymers, are important considerations that facilitate the use of such nanoparticles in the human body, in advanced materials for energy harvesting, or in devices for single molecule detection. Here, we report small-angle neutron scattering (SANS) measurements from surfactant or poly(ethylene glycol) (PEG) coated gold nanorods in solution, which quantitatively determine the location, structure, and composition of these surface layers. In addition, by synthesizing gold nanorods using seed crystals which are coated with deuterated cetyltrimethylammonium bromide (dCTAB), we are able to exploit the isotopic sensitivity of SANS to study, for the first time, the retention of surfactant from the seed crystals to the final gold nanorod product, finding that very little exchange of the deuterated with hydrogenated surfactant occurs. Finally, we demonstrate that, when Au NRs are PEGylated using stand...

45 citations

Journal ArticleDOI
TL;DR: In this article, the hydrogenolysis of tetrahydrofurfural alcohol to 1,5-pentanediol was studied over a series of carbon-supported metal/metal-oxide pairs.
Abstract: The hydrogenolysis of tetrahydrofurfural alcohol to 1,5-pentanediol was studied over a series of carbon-supported metal/metal-oxide pairs. In agreement with previous reports, specific pairs, especially Pt and Ir paired with WOx, MoOx and ReOx, exhibited high activity and selectivity, even though the individual components were not active or selective. Only reducible oxides produced selective catalysts. A more comprehensive study of the Pt–WOx system indicated that the active form of the catalyst exists as a thin, submonolayer film of the oxide on the Pt surface. This film could be formed by atomic layer deposition (ALD) of W(CO)6 onto the Pt nanocrystals and STEM–EDS mapping demonstrated that ALD deposition occurred selectively on the Pt. When the catalyst was formed by impregnation of Pt and W salts, the WOx was mobile and able to move onto the Pt. The implications of these result for preparing selective catalysts are discussed.

45 citations

Journal ArticleDOI
TL;DR: In this paper, a thin film composites consisting of a ZnSe matrix and CdSe nanocrystals (NCs) were prepared by a novel technique combining electrospray and organometallic chemical vapor deposition (OMCVD).

44 citations

Journal ArticleDOI
TL;DR: In this article, a general synthetic route to monodisperse c-cobalt (β-Mn type phase) nanocrystals (e-Co) and controlled assembly of these nanocrystal are presented.
Abstract: General synthetic routes to monodisperse c-cobalt (β-Mn type phase) nanocrystals (e-Co) and controlled assembly of these nanocrystals are presented in this paper. The e-Co particles are obtained by superhydride reduction of cobalt chloride (anhydrous or hexahydrate) in a high temperature solution phase (200°C) in the presence of a combination of long chain diol, oleic acid and trialkylphosphine. Monodisperse nanocrystals are isolated by size selective precipitation. As synthesized cobalt particles are each a single crystal with a complex cubic structure related to the beta phase of elemental manganese (β-Mn). Self-assembly of these uniform cobalt particles on solid substrates is induced by evaporation of the carrier solvent producing 2-D and 3-D magnetic superlattices. Annealing of assembled e-Co nanocrystal arrays converts them to the hcp cobalt crystal arrays. The inter-particle distance can be adjusted by selected thermal treatments or by chemical ligand exchange. This control over particle dimensions, crystallinity and assembly offers a model system for the study of ultra-high density recording media.

44 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Abstract: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.

7,393 citations