scispace - formally typeset
Search or ask a question
Author

Christopher B. Murray

Bio: Christopher B. Murray is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Nanocrystal & Quantum dot. The author has an hindex of 88, co-authored 336 publications receiving 54410 citations. Previous affiliations of Christopher B. Murray include Universal Display Corporation & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: A facile ligand-exchange approach is reported, which enables sequential surface functionalization and phase transfer of colloidal NCs while preserving the NC size and shape and represents an important step toward controllably engineering the surface properties of NCs.
Abstract: The ability to engineer surface properties of nanocrystals (NCs) is important for various applications, as many of the physical and chemical properties of nanoscale materials are strongly affected by the surface chemistry. Here, we report a facile ligand-exchange approach, which enables sequential surface functionalization and phase transfer of colloidal NCs while preserving the NC size and shape. Nitrosonium tetrafluoroborate (NOBF4) is used to replace the original organic ligands attached to the NC surface, stabilizing the NCs in various polar, hydrophilic media such as N,N-dimethylformamide for years, with no observed aggregation or precipitation. This approach is applicable to various NCs (metal oxides, metals, semiconductors, and dielectrics) of different sizes and shapes. The hydrophilic NCs obtained can subsequently be further functionalized using a variety of capping molecules, imparting different surface functionalization to NCs depending on the molecules employed. Our work provides a versatile l...

755 citations

Journal ArticleDOI
07 Mar 2012-ACS Nano
TL;DR: An improved synthesis of colloidal gold nanorods (NRs) is reported by using aromatic additives that reduce the concentration of hexadecyltrimethylammonium bromide surfactant to ~0.05 M as opposed to 0.1 M in well-established protocols.
Abstract: We report an improved synthesis of colloidal gold nanorods (NRs) by using aromatic additives that reduce the concentration of hexadecyltrimethylammonium bromide surfactant to ∼0.05 M as opposed to 0.1 M in well-established protocols. The method optimizes the synthesis for each of the 11 additives studied, allowing a rich array of monodisperse gold NRs with longitudinal surface plasmon resonance tunable from 627 to 1246 nm to be generated. The gold NRs form large-area ordered assemblies upon slow evaporation of NR solution, exhibiting liquid crystalline ordering and several distinct local packing motifs that are dependent upon the NR’s aspect ratio. Tailored synthesis of gold NRs with simultaneous improvements in monodispersity and dimensional tunability through rational introduction of additives will not only help to better understand the mechanism of seed-mediated growth of gold NRs but also advance the research on plasmonic metamaterials incorporating anisotropic metal nanostructures.

748 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown spectroscopically that electronic energy transfer in close-packed CdSe quantum-dot (QD) solids arises from dipole-dipole interdot interactions between proximal dots.
Abstract: We show spectroscopically that electronic energy transfer in close-packed CdSe quantum-dot (QD) solids arises from dipole-dipole interdot interactions between proximal dots. We use cw and time-resolved photoluminescence to study electronic energy transfer in optically thin and clear, close-packed QD solids prepared from CdSe QD samples tunable from 17 to 150 \AA{} in diameter (\ensuremath{\sigma}4.5%). High-resolution scanning electron microscopy and small-angle x-ray scattering are used to build a well-defined structural model for the QD solids. In mixed QD solids of small and large dots, we measure quenching of the luminescence (lifetime) of the small dots accompanied by enhancement of the luminescence (lifetime) of the large dots consistent with electronic energy transfer from the small to the large dots. In QD solids of single size dots, a redshifted and modified emission line shape is consistent with electronic energy transfer within the sample inhomogeneous distribution. We use F\"orster theory for long-range resonance transfer through dipole-dipole interdot interactions to explain electronic energy transfer in these close-packed QD solids. \textcopyright{} 1996 The American Physical Society.

723 citations

Journal ArticleDOI
10 Nov 2000-Science
TL;DR: Self-assembled devices composed of periodic arrays of 10-nanometer-diameter cobalt nanocrystals display spin-dependent electron transport and low-energy spin-flip scattering suppresses magnetoresistance with increasing temperature and bias-voltage.
Abstract: Self-assembled devices composed of periodic arrays of 10-nanometer-diameter cobalt nanocrystals display spin-dependent electron transport. Current-voltage characteristics are well described by single-electron tunneling in a uniform array. At temperatures below 20 kelvin, device magnetoresistance ratios are on the order of 10%, approaching the maximum predicted for ensembles of cobalt islands with randomly oriented preferred magnetic axes. Low-energy spin-flip scattering suppresses magnetoresistance with increasing temperature and bias-voltage.

606 citations

Journal Article
TL;DR: In this paper, a simple route to the production of high-quality CdE (E = S, Se, Te) semiconductor nanocrystallites is presented, based on pyrolysis of organometallic reagents by injection into a hot coordinating solvent.
Abstract: A simple route to the production of high-quality CdE (E = S, Se, Te) semiconductor nanocrystallites is presented. Crystallites from ∼ 12 A to ∼ 115 A in diameter with consistent crystal structure, surface derivatization, and a bigh degree of monodispersity are prepared in a single reaction. The synthesis is based on the pyrolysis of organometallic reagents by injection into a hot coordinating solvent. This provides temporally discrete nucleation and permits controlled growth of macroscopic quantities of nanocrystallites. Size selective precipitation of crystallites from portions of the growth solution isolates samples with narrow size distributions (<5% rms in diameter). High sample quality results in sharp absorption features and strong "band-edge" emission which is tunable with particle size and choice of material. Transmission electron microscopy and X-ray powder diffraction in combination with computer simulations indicate the presence of bulk structural properties in crystallites as small as 20 A in diameter.

597 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Abstract: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.

7,393 citations