scispace - formally typeset
Search or ask a question
Author

Christopher Baskerville

Other affiliations: Purdue University
Bio: Christopher Baskerville is an academic researcher from Scripps Research Institute. The author has contributed to research in topics: Saccharomyces cerevisiae & Cdc14. The author has an hindex of 9, co-authored 9 publications receiving 1310 citations. Previous affiliations of Christopher Baskerville include Purdue University.

Papers
More filters
Journal ArticleDOI
16 Apr 1999-Cell
TL;DR: A mutation is identified, net1-1, that bypasses the lethality of tem1 delta and is a key component of a multifunctional complex, denoted RENT (for regulator of nucleolar silencing and telophase), that also contains Cdc14 and the silencing regulator Sir2.

758 citations

Journal ArticleDOI
26 Jun 2003-Nature
TL;DR: It is shown that the essential role of Cks1 in Saccharomyces cerevisiae is primarily involved in promoting mitosis by modulating the transcriptional activation of the APC/C protein–ubiquitin ligase activator Cdc20.
Abstract: Cks proteins are small evolutionarily conserved proteins that interact genetically and physically with cyclin-dependent kinases. However, in spite of a large body of genetic, biochemical and structural research, no compelling unifying model of their functions has emerged. Here we show, by investigating the essential role of Cks1 in Saccharomyces cerevisiae, that the protein is primarily involved in promoting mitosis by modulating the transcriptional activation of the APC/C protein-ubiquitin ligase activator Cdc20. Cks1 is required for both the periodic dissociation of Cdc28 kinase from the CDC20 promoter and the periodic association of the proteasome with the promoter. We propose that the essential role of Cks1 is to recruit the proteasome to, and/or dissociate the Cdc28 kinase from, the CDC20 promoter, thus facilitating transcription by remodelling transcriptional complexes or chromatin associated with the CDC20 gene.

134 citations

Journal ArticleDOI
TL;DR: The catalytically inactive Cdc14p C283S/R289A mutant is not able to suppress the temperature sensitivity of acdc14–1 ts mutant nor replace the wild type genein vivo, demonstrating that phosphatase activity is required for the cell cycle function of CDC14p.

119 citations

Journal ArticleDOI
TL;DR: This study suggests that Cdc5/Polo is unusually promiscuous and highlights the need to validate CDC5/ Polo in vitro phosphorylation sites by direct in vivo mapping experiments.
Abstract: Background: In S. cerevisiae, the mitotic exit network (MEN) proteins, including the Polo-like protein kinase Cdc5 and the protein phosphatase Cdc14, are required for exit from mitosis. In preanaphase cells, Cdc14 is sequestered to the nucleolus by Net1 as a part of the RENT complex. When cells are primed to exit mitosis, the RENT complex is disassembled and Cdc14 is released from the nucleolus. Results: Here, we show that Cdc5 is necessary to free nucleolar Cdc14 in late mitosis, that elevated Cdc5 activity provokes ectopic release of Cdc14 in pre-anaphase cells, and that the phosphorylation state of Net1 is regulated by Cdc5 during anaphase. Furthermore, recombinant Cdc5 and Xenopus Polo-like kinase can disassemble the RENT complex in vitro by phosphorylating Net1 and thereby reducing its affinity for Cdc14. Surprisingly, although RENT complexes containing Net1 mutants (Net1(7m) and Net1(19m') lacking sites phosphorylated by Cdc5 in vitro are refractory to disassembly by Polo-like kinases in vitro, net1(7m) and net1(19m') cells grow normally and exhibit only minor defects in releasing Cdc14 during anaphase. However, net1(19m') cells exhibit a synergistic growth defect when combined with mutations in CDC5 or DBF2 (another MEN gene). Conclusions: We propose that although Cdc5 potentially disassembles RENT by directly phosphorylating Net1, Cdc5 mediates exit from mitosis primarily by phosphorylating other targets. Our study suggests that Cdc5/Polo is unusually promiscuous and highlights the need to validate Cdc5/Polo in vitro phosphorylation sites by direct in vivo mapping experiments.

91 citations

Journal ArticleDOI
TL;DR: Evidence is presented supporting the proposed role of Net1 in regulating CDC14 and exit from mitosis and it is shown that the NH2-terminal fragment Net1 directly binds Cdc14 in vitro and is a highly specific competitive inhibitor of its activity with five different substrates including the physiologic targets Swi5 and Sic1.

81 citations


Cited by
More filters
Journal ArticleDOI
16 Oct 2003-Nature
TL;DR: The construction and analysis of a collection of yeast strains expressing full-length, chromosomally tagged green fluorescent protein fusion proteins helps reveal the logic of transcriptional co-regulation, and provides a comprehensive view of interactions within and between organelles in eukaryotic cells.
Abstract: A fundamental goal of cell biology is to define the functions of proteins in the context of compartments that organize them in the cellular environment. Here we describe the construction and analysis of a collection of yeast strains expressing full-length, chromosomally tagged green fluorescent protein fusion proteins. We classify these proteins, representing 75% of the yeast proteome, into 22 distinct subcellular localization categories, and provide localization information for 70% of previously unlocalized proteins. Analysis of this high-resolution, high-coverage localization data set in the context of transcriptional, genetic, and protein-protein interaction data helps reveal the logic of transcriptional co-regulation, and provides a comprehensive view of interactions within and between organelles in eukaryotic cells.

4,310 citations

Journal ArticleDOI
TL;DR: Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now show that it has additional functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response and biogenesis of multiple ribonucleoprotein particles.
Abstract: The nucleolus is a distinct subnuclear compartment that was first observed more than 200 years ago. Nucleoli assemble around the tandemly repeated ribosomal DNA gene clusters and 28S, 18S and 5.8S ribosomal RNAs (rRNAs) are transcribed as a single precursor, which is processed and assembled with the 5S rRNA into ribosome subunits. Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now show that it has additional functions. Some of these functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response and biogenesis of multiple ribonucleoprotein particles, will be discussed, as will the relation of the nucleolus to human diseases.

1,353 citations

Journal ArticleDOI
TL;DR: It is proposed that binding of resveratrol to SIRT1 promotes a conformational change that better accommodates the attached coumarin group.

994 citations

Journal ArticleDOI
TL;DR: Discovery of an intrinsic deacetylation activity for the conserved SIR2 family provides a mechanism for modifying histones and other proteins to regulate transcription and diverse biological processes.
Abstract: Homologs of the chromatin-bound yeast silent information regulator 2 (SIR2) protein are found in organisms from all biological kingdoms. SIR2 itself was originally discovered to influence mating-type control in haploid cells by locus-specific transcriptional silencing. Since then, SIR2 and its homologs have been suggested to play additional roles in suppression of recombination, chromosomal stability, metabolic regulation, meiosis, and aging. Considering the far-ranging nature of these functions, a major experimental goal has been to understand the molecular mechanism(s) by which this family of proteins acts. We report here that members of the SIR2 family catalyze an NAD–nicotinamide exchange reaction that requires the presence of acetylated lysines such as those found in the N termini of histones. Significantly, these enzymes also catalyze histone deacetylation in a reaction that absolutely requires NAD, thereby distinguishing them from previously characterized deacetylases. The enzymes are active on histone substrates that have been acetylated by both chromatin assembly-linked and transcription-related acetyltransferases. Contrary to a recent report, we find no evidence that these proteins ADP-ribosylate histones. Discovery of an intrinsic deacetylation activity for the conserved SIR2 family provides a mechanism for modifying histones and other proteins to regulate transcription and diverse biological processes.

971 citations

Journal ArticleDOI
TL;DR: Key events in mitosis such as sister chromatid separation and subsequent inactivation of cyclin-dependent kinase 1 are regulated by ubiquitin- dependent proteolysis, mediated by the anaphase-promoting complex.

949 citations