scispace - formally typeset
Search or ask a question
Author

Christopher D. Town

Other affiliations: TigerLogic
Bio: Christopher D. Town is an academic researcher from J. Craig Venter Institute. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 61, co-authored 121 publications receiving 16588 citations. Previous affiliations of Christopher D. Town include TigerLogic.


Papers
More filters
Journal ArticleDOI
Boulos Chalhoub1, Shengyi Liu2, Isobel A. P. Parkin3, Haibao Tang4, Haibao Tang5, Xiyin Wang6, Julien Chiquet1, Harry Belcram1, Chaobo Tong2, Birgit Samans7, Margot Correa8, Corinne Da Silva8, Jérémy Just1, Cyril Falentin9, Chu Shin Koh10, Isabelle Le Clainche1, Maria Bernard8, Pascal Bento8, Benjamin Noel8, Karine Labadie8, Adriana Alberti8, Mathieu Charles9, Dominique Arnaud1, Hui Guo6, Christian Daviaud, Salman Alamery11, Kamel Jabbari12, Kamel Jabbari1, Meixia Zhao13, Patrick P. Edger14, Houda Chelaifa1, David C. Tack15, Gilles Lassalle9, Imen Mestiri1, Nicolas Schnel9, Marie-Christine Le Paslier9, Guangyi Fan, Victor Renault16, Philippe E. Bayer11, Agnieszka A. Golicz11, Sahana Manoli11, Tae-Ho Lee6, Vinh Ha Dinh Thi1, Smahane Chalabi1, Qiong Hu2, Chuchuan Fan17, Reece Tollenaere11, Yunhai Lu1, Christophe Battail8, Jinxiong Shen17, Christine Sidebottom10, Xinfa Wang2, Aurélie Canaguier1, Aurélie Chauveau9, Aurélie Bérard9, G. Deniot9, Mei Guan18, Zhongsong Liu18, Fengming Sun, Yong Pyo Lim19, Eric Lyons20, Christopher D. Town4, Ian Bancroft21, Xiaowu Wang, Jinling Meng17, Jianxin Ma13, J. Chris Pires22, Graham J.W. King23, Dominique Brunel9, Régine Delourme9, Michel Renard9, Jean-Marc Aury8, Keith L. Adams15, Jacqueline Batley11, Jacqueline Batley24, Rod J. Snowdon7, Jörg Tost, David Edwards24, David Edwards11, Yongming Zhou17, Wei Hua2, Andrew G. Sharpe10, Andrew H. Paterson6, Chunyun Guan18, Patrick Wincker25, Patrick Wincker8, Patrick Wincker1 
22 Aug 2014-Science
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

1,743 citations

Journal ArticleDOI
TL;DR: The algorithm of the Program to Assemble Spliced Alignments (PASA) tool is described, as well as the results of automated updates to Arabidopsis gene annotations.
Abstract: The spliced alignment of expressed sequence data to genomic sequence has proven a key tool in the comprehensive annotation of genes in eukaryotic genomes. A novel algorithm was developed to assemble clusters of overlapping transcript alignments (ESTs and full-length cDNAs) into maximal alignment assemblies, thereby comprehensively incorporating all available transcript data and capturing subtle splicing variations. Complete and partial gene structures identified by this method were used to improve The Institute for Genomic Research Arabidopsis genome annotation (TIGR release v.4.0). The alignment assemblies permitted the automated modeling of several novel genes and >1000 alternative splicing variations as well as updates (including UTR annotations) to nearly half of the ~27 000 annotated protein coding genes. The algorithm of the Program to Assemble Spliced Alignments (PASA) tool is described, as well as the results of automated updates to Arabidopsis gene annotations.

1,441 citations

Journal ArticleDOI
Nevin D. Young1, Frédéric Debellé2, Frédéric Debellé3, Giles E. D. Oldroyd4, René Geurts5, Steven B. Cannon6, Steven B. Cannon7, Michael K. Udvardi, Vagner A. Benedito8, Klaus F. X. Mayer, Jérôme Gouzy3, Jérôme Gouzy2, Heiko Schoof9, Yves Van de Peer10, Sebastian Proost10, Douglas R. Cook11, Blake C. Meyers12, Manuel Spannagl, Foo Cheung13, Stéphane De Mita5, Vivek Krishnakumar13, Heidrun Gundlach, Shiguo Zhou14, Joann Mudge15, Arvind K. Bharti15, Jeremy D. Murray4, Marina Naoumkina, Benjamin D. Rosen11, Kevin A. T. Silverstein1, Haibao Tang13, Stephane Rombauts10, Patrick X. Zhao, Peng Zhou1, Valérie Barbe, Philippe Bardou3, Philippe Bardou2, Michael Bechner14, Arnaud Bellec2, Anne Berger, Hélène Bergès2, Shelby L. Bidwell13, Ton Bisseling5, Ton Bisseling16, Nathalie Choisne, Arnaud Couloux, Roxanne Denny1, Shweta Deshpande17, Xinbin Dai, Jeff J. Doyle18, Anne Marie Dudez2, Anne Marie Dudez3, Andrew Farmer15, Stéphanie Fouteau, Carolien Franken5, Chrystel Gibelin3, Chrystel Gibelin2, John Gish11, Steven A. Goldstein14, Alvaro J. González12, Pamela J. Green12, Asis Hallab19, Marijke Hartog5, Axin Hua17, Sean Humphray20, Dong-Hoon Jeong12, Yi Jing17, Anika Jöcker19, Steve Kenton17, Dong-Jin Kim11, Dong-Jin Kim21, Kathrin Klee19, Hongshing Lai17, Chunting Lang5, Shaoping Lin17, Simone L. Macmil17, Ghislaine Magdelenat, Lucy Matthews20, Jamison McCorrison13, Erin L. Monaghan13, Jeong Hwan Mun11, Jeong Hwan Mun22, Fares Z. Najar17, Christine Nicholson20, Céline Noirot2, Majesta O'Bleness17, Charles Paule1, Julie Poulain, Florent Prion3, Florent Prion2, Baifang Qin17, Chunmei Qu17, Ernest F. Retzel15, Claire Riddle20, Erika Sallet2, Erika Sallet3, Sylvie Samain, Nicolas Samson3, Nicolas Samson2, Iryna Sanders17, Olivier Saurat2, Olivier Saurat3, Claude Scarpelli, Thomas Schiex2, Béatrice Segurens, Andrew J. Severin6, D. Janine Sherrier12, Ruihua Shi17, Sarah Sims20, Susan R. Singer23, Senjuti Sinharoy, Lieven Sterck10, Agnès Viollet, Bing Bing Wang1, Keqin Wang17, Mingyi Wang, Xiaohong Wang1, Jens Warfsmann19, Jean Weissenbach, Doug White17, James D. White17, Graham B. Wiley17, Patrick Wincker, Yanbo Xing17, Limei Yang17, Ziyun Yao17, Fu Ying17, Jixian Zhai12, Liping Zhou17, Antoine Zuber2, Antoine Zuber3, Jean Dénarié2, Jean Dénarié3, Richard A. Dixon, Gregory D. May15, David C. Schwartz14, Jane Rogers24, Francis Quetier, Christopher D. Town13, Bruce A. Roe17 
22 Dec 2011-Nature
TL;DR: The draft sequence of the M. truncatula genome sequence is described, a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics, which provides significant opportunities to expand al falfa’s genomic toolbox.
Abstract: Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.

1,153 citations

Journal ArticleDOI
16 Dec 1999-Nature
TL;DR: The sequence of chromosome 2 from the Columbia ecotype is reported in two gap-free assemblies (contigs) of 3.6 and 16 megabases, which represents the longest published stretch of uninterrupted DNA sequence assembled from any organism to date.
Abstract: Arabidopsis thaliana (Arabidopsis) is unique among plant model organisms in having a small genome (130-140 Mb), excellent physical and genetic maps, and little repetitive DNA. Here we report the sequence of chromosome 2 from the Columbia ecotype in two gap-free assemblies (contigs) of 3.6 and 16 megabases (Mb). The latter represents the longest published stretch of uninterrupted DNA sequence assembled from any organism to date. Chromosome 2 represents 15% of the genome and encodes 4,037 genes, 49% of which have no predicted function. Roughly 250 tandem gene duplications were found in addition to large-scale duplications of about 0.5 and 4.5 Mb between chromosomes 2 and 1 and between chromosomes 2 and 4, respectively. Sequencing of nearly 2 Mb within the genetically defined centromere revealed a low density of recognizable genes, and a high density and diverse range of vestigial and presumably inactive mobile elements. More unexpected is what appears to be a recent insertion of a continuous stretch of 75% of the mitochondrial genome into chromosome 2.

792 citations

Journal ArticleDOI
TL;DR: This updated Arabidopsis genome annotation with a substantially increased resolution of gene models will not only further the understanding of the biological processes of this plant model but also of other species.
Abstract: Summary The flowering plant Arabidopsis thaliana is a dicot model organism for research in many aspects of plant biology. A comprehensive annotation of its genome paves the way for understanding the functions and activities of all types of transcripts, including mRNA, the various classes of non-coding RNA, and small RNA. The TAIR10 annotation update had a profound impact on Arabidopsis research but was released more than 5 years ago. Maintaining the accuracy of the annotation continues to be a prerequisite for future progress. Using an integrative annotation pipeline, we assembled tissue-specific RNA-Seq libraries from 113 datasets and constructed 48 359 transcript models of protein-coding genes in eleven tissues. In addition, we annotated various classes of non-coding RNA including microRNA, long intergenic RNA, small nucleolar RNA, natural antisense transcript, small nuclear RNA, and small RNA using published datasets and in-house analytic results. Altogether, we identified 635 novel protein-coding genes, 508 novel transcribed regions, 5178 non-coding RNAs, and 35 846 small RNA loci that were formerly unannotated. Analysis of the splicing events and RNA-Seq based expression profiles revealed the landscapes of gene structures, untranslated regions, and splicing activities to be more intricate than previously appreciated. Furthermore, we present 692 uniformly expressed housekeeping genes, 43% of whose human orthologs are also housekeeping genes. This updated Arabidopsis genome annotation with a substantially increased resolution of gene models will not only further our understanding of the biological processes of this plant model but also of other species.

769 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results suggest that Cufflinks can illuminate the substantial regulatory flexibility and complexity in even this well-studied model of muscle development and that it can improve transcriptome-based genome annotation.
Abstract: High-throughput mRNA sequencing (RNA-Seq) promises simultaneous transcript discovery and abundance estimation. However, this would require algorithms that are not restricted by prior gene annotations and that account for alternative transcription and splicing. Here we introduce such algorithms in an open-source software program called Cufflinks. To test Cufflinks, we sequenced and analyzed >430 million paired 75-bp RNA-Seq reads from a mouse myoblast cell line over a differentiation time series. We detected 13,692 known transcripts and 3,724 previously unannotated ones, 62% of which are supported by independent expression data or by homologous genes in other species. Over the time series, 330 genes showed complete switches in the dominant transcription start site (TSS) or splice isoform, and we observed more subtle shifts in 1,304 other genes. These results suggest that Cufflinks can illuminate the substantial regulatory flexibility and complexity in even this well-studied model of muscle development and that it can improve transcriptome-based genome annotation.

13,337 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
14 Dec 2000-Nature
TL;DR: This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
Abstract: The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.

8,742 citations

Journal ArticleDOI
24 Mar 2000-Science
TL;DR: The nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome is determined using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map.
Abstract: The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

6,180 citations