scispace - formally typeset
Search or ask a question
Author

Christopher E. Lane

Bio: Christopher E. Lane is an academic researcher from University of Rhode Island. The author has contributed to research in topics: Genome & Nucleomorph. The author has an hindex of 28, co-authored 82 publications receiving 6395 citations. Previous affiliations of Christopher E. Lane include Dalhousie University & Canadian Institute for Advanced Research.


Papers
More filters
Journal ArticleDOI
TL;DR: This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists, and proposes a scheme that is based on nameless ranked systematics.
Abstract: This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional ''kingdoms.'' The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.

1,620 citations

Journal ArticleDOI
TL;DR: This revision of the classification of eukaryotes retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees.
Abstract: This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.

1,414 citations

Journal ArticleDOI
TL;DR: It is confirmed that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista, and suggested primer sets for DNA sequences from environmental samples that are effective for each clade are provided.
Abstract: This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many ...

750 citations

Journal ArticleDOI
17 Feb 2012-Science
TL;DR: Draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa are analyzed and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae.
Abstract: The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C. paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.

372 citations

Journal ArticleDOI
Bruce A. Curtis1, Goro Tanifuji1, Goro Tanifuji2, Fabien Burki2, Ansgar Gruber1, Ansgar Gruber3, Manuel Irimia4, Shinichiro Maruyama1, Shinichiro Maruyama2, Maria Cecilia Arias5, Steven G. Ball5, Gillian H. Gile1, Gillian H. Gile2, Yoshihisa Hirakawa2, Julia F. Hopkins1, Julia F. Hopkins2, Alan Kuo6, Stefan A. Rensing7, Stefan A. Rensing1, Jeremy Schmutz6, Aikaterini Symeonidi7, Marek Eliáš8, Robert J.M. Eveleigh1, Emily K. Herman9, Mary J. Klute9, Takuro Nakayama1, Takuro Nakayama2, Miroslav Oborník10, Miroslav Oborník11, Adrian Reyes-Prieto2, Adrian Reyes-Prieto12, E. Virginia Armbrust13, Stephen J. Aves14, Robert G. Beiko1, Pedro M. Coutinho15, Joel B. Dacks9, Dion G. Durnford12, Naomi M. Fast2, Beverley R. Green2, Cameron J. Grisdale2, Franziska Hempel, Bernard Henrissat15, Marc P. Höppner16, Ken-ichiro Ishida17, Eunsoo Kim18, Luděk Kořený10, Luděk Kořený11, Peter G. Kroth3, Yuan Liu14, Yuan Liu19, Shehre-Banoo Malik1, Shehre-Banoo Malik2, Uwe G. Maier, Darcy L. McRose20, Thomas Mock21, Jonathan A. D. Neilson12, Naoko T. Onodera2, Naoko T. Onodera1, Anthony M. Poole22, Ellen J. Pritham, Thomas A. Richards19, Gabrielle Rocap13, Scott William Roy23, Chihiro Sarai17, Sarah Schaack24, Shu Shirato17, Claudio H. Slamovits1, Claudio H. Slamovits2, David F. Spencer1, David F. Spencer2, Shigekatsu Suzuki17, Alexandra Z. Worden20, Stefan Zauner, Kerrie Barry6, Callum J. Bell25, Arvind K. Bharti25, John A. Crow25, Jane Grimwood6, Robin Kramer25, Erika Lindquist6, Susan Lucas6, Asaf Salamov6, Geoffrey I. McFadden26, Christopher E. Lane, Patrick J. Keeling2, Michael W. Gray1, Michael W. Gray2, Igor V. Grigoriev6, John M. Archibald1, John M. Archibald2 
06 Dec 2012-Nature
TL;DR: The nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans are sequenced and extensive genetic and biochemical mosaicism is revealed, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosYmbionT cytOSol of both algae.
Abstract: Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.

356 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
Abstract: SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.

18,256 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

BookDOI
TL;DR: In this paper, the authors present a set of methods for soil sampling and analysis, such as: N.H.Hendershot, H.M.Hettiarachchi, C.C.De Freitas Arbuscular Mycorrhiza, Y.K.Soon and W.J.
Abstract: SOIL SAMPLING AND HANDLING, G.T. Patterson and M.R. Carter Soil Sampling Designs, D. Pennock, T. Yates, and J. Braidek Sampling Forest Soils, N. Belanger and K.C.J. Van Rees Measuring Change in Soil Organic Carbon Storage, B.H. Ellert, H.H. Janzen, A.J. VandenBygaart, and E. Bremer Soil Sample Handling and Storage, S.C. Sheppard and J.A. Addison Quality Control in Soil Chemical Analysis, C. Swyngedouw and R. Lessard DIAGNOSTIC METHODS for SOIL and ENVIRONMENTAL MANAGEMENT, J.J. Schoenau and I.P. O'Halloran Nitrate and Exchangeable Ammonium Nitrogen, D.G. Maynard, Y.P. Kalra, and J.A. Crumbaugh Mehlich 3 Extractable Elements, N. Ziadi and T. Sen Tran Sodium Bicarbonate Extractable Phosphorus, J.J. Schoenau and I. P. O'Halloran Boron, Molybdenum and Selenium, G. M. Hettiarachchi and U. C. Gupta Trace Element Assessment, W.H. Hendershot, H. Lalande, D. Reyes, and D. MacDonald Readily Soluble Aluminum and Manganese in Acid Soils, Y.K. Soon, N. Belanger, and W.H. Hendershot Lime Requirement, N. Ziadi and T. Sen Tran Ion Supply Rates Using Ion Exchange Resins, P. Qian, J.J. Schoenau, and N. Ziadi Environmental Soil Phosphorus Indices, A.N. Sharpley, P.J.A. Kleinman and J.L. Weld Electrical Conductivity and Soluble Ions, J.J. Miller and D. Curtin SOIL CHEMICAL ANALYSES, Y.K. Soon and W.H. Hendershot Soil Reaction and Exchangeable Acidity, W.H. Hendershot, H. Laland,e and M. Duquette Collection and Characterization of Soil Solutions, J.D. MacDonald, N. Belanger, S. Sauve, F. Courchesne, and W.H. Hendershot Ion Exchange and Exchangeable Cations, W.H. Hendershot, H. Lalande, and M. Duquette Non-Exchangeable Ammonium, Y.K. Soon and B.C. Liang Carbonates, T.B. Goh and A.R. Mermut Total and Organic Carbon, J.O. Skjemstad and J.A. Baldock Total Nitrogen, P.M. Rutherford, W.B. McGill, C.T. Figueiredo, and J.M. Arocena Chemical Characterization of Soil Sulphur, C.G. Kowalenko and M. Grimmett Total and Organic Phosphorus, I.P. O'Halloran and B.J. Cade-Menum Characterization of Available P by Sequential Extraction, H. Tiessen and J.O. Moir Extractable Al, Fe, Mn, and Si, F. Courchesne and M.C. Turmel Determining Nutrient Availability in Forest Soils, N. Belanger, David Pare, and W.H. Hendershot Chemical Properties of Organic Soils, A. Karam SOIL BIOLOGICAL ANALYSES, E. Topp and C.A. Fox Cultural Methods for Soil and Root Associated Microorganisms, J.J. Germida and J.R. de Freitas Arbuscular Mycorrhiza, Y. Dalpe and C. Hamel Root Nodule Bacteria and Symbiotic Nitrogen Fixation, D. Prevost and H. Antoun Microarthropods, J.P Winter and V.M. Behan-Pelletier Nematodes, T.A. Forge and J. Kimpinski Earthworms, M.J. Clapperton, G.H. Baker and C.A. Fox Enchytraeids, S.M. Adl Protozoa, S.M. Adl, D. Acosta-Mercado, and D.H. Lynn Denitrification Techniques for Soils, C.F. Drury, D.D. Myrold, E.G. Beauchamp, and W.D.Reynolds Nitrification Techniques in Soil Systems, C.F. Drury, S.C. Hart, and X.M. Yang Substrate-Induced Respiration and Selective Inhibition as Measures of Microbial Biomass in Soils, V.L. Bailey, J.L. Smith, and H. Bolton Jr. Assessment of Soil Biological Activity, R.P.Beyaert and C.A. Fox Soil ATP, R.P. Voroney, G. Wen, and R.P. Beyaert Lipid-Based Community Analysis, K.E. Dunfield Bacterial Community Analyses by Denaturing Gradient Gel Electrophoresis (DGGE), E. Topp, Y.-C. Tien, and A. Hartmann Indicators of Soil Food Web Properties, T.A. Forge and M. Tenuta SOIL ORGANIC MATTER ANALYSES, E.G. Gregorich and M.H. Beare Carbon Mineralization, D.W. Hopkins Mineralizable Nitrogen, Denis Curtin and C.A. Campbell Physically Uncomplexed Organic Matter, E.G. Gregorich and M.H. Beare Extraction and Characterization of Dissolved Organic Matter, M.H. Chantigny, D.A. Angers, K. Kaiser, and K. Kalbitz Soil Microbial Biomass C, N, P and S, R.P. Voroney, P.C. Brookes, and R.P. Beyaert Carbohydrates, M.H. Chantigny and D.A. Angers Organic Forms of Nitrogen, D.C. Olk Soil Humus Fractions, D.W. Anderson and J.J Schoenau Soil Organic Matter Analysis by Solid-State 13C Nuclear Magnetic Resonance Spectroscopy, M. J. Simpson and C. M. Preston Stable Isotopes in Soil and Environmental Research, B.H. Ellert and L. Rock SOIL PHYSICAL ANALYSES, D.A. Angers and F.J. Larney Particle Size Distribution, D. Kroetsch and C. Wang Soil Shrinkage, C.D. Grant Soil Density and Porosity, X. Hao, B.C. Ball, J.L.B. Culley, M.R. Carter, and G.W. Parkin Soil Consistency: Upper and Lower Plastic Limits, R.A. McBride Compaction and Compressibility, P. Defossez, T. Keller and G. Richard Field Soil Strength, G.C. Topp and D.R. Lapen Air Permeability, C.D. Grant and P.H. Groenevelt Aggregate Stability to Water, D.A. Angers, M.S. Bullock, and G.R. Mehuys Dry Aggregate Size Distribution, F.J. Larney Soil Air, R.E. Farrell and J.A. Elliott Soil-Surface Gas Emissions, P. Rochette and N. Bertrand Bulk Density Measurement in Forest Soils, D.G. Maynard and M.P. Curran Physical Properties of Organic Soils and Growing Media: Particle Size and Degree of Decomposition, L.E. Parent and J. Caron Physical Properties of Organic Soils and Growing Media: Water and Air Storage and Flow Dynamics, J. Caron, D.E. Elrick, J.C. Michel, and R. Naasz SOIL WATER ANALYSES, W.D. Reynolds and G.C. Topp Soil Water Analyses: Principles and Parameters, W.D. Reynolds and G.C. Topp Soil Water Content, G.C. Topp, G.W. Parkin, and Ty P.A Ferre Soil Water Potential, N.J. Livingston and G.C. Topp Soil Water Desorption and Imbibition: Tension and Pressure Techniques, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Long Column, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Psychrometry, W.D. Reynolds and G.C. Topp Saturated Hydraulic Properties: Laboratory Methods, W.D. Reynolds Saturated Hydraulic Properties: Well Permeameter, W.D. Reynolds Saturated Hydraulic Properties: Ring Infiltrometer, W.D. Reynolds Saturated Hydraulic Properties: Auger-Hole, G.C. Topp Saturated Hydraulic Properties: Piezometer, G.C. Topp Unsaturated Hydraulic Properties: Laboratory Tension Infiltrometer, F.J. Cook Unsaturated Hydraulic Properties: Laboratory Evaporation, O.O. B. Wendroth and N. Wypler Unsaturated Hydraulic Properties: Field Tension Infiltrometer, W.D. Reynolds Unsaturated Hydraulic Properties: Instantaneous Profile, W.D. Reynolds Estimation of Soil Hydraulic Properties, F.J. Cook and H.P. Cresswell Analysis of Soil Variability, B.C. Si, R.G. Kachanoski, and W.D. Reynolds APPENDIX Site Description, G.T. Patterson and J.A. Brierley General Safe Laboratory Operation Procedures, P. St-Georges INDEX

4,631 citations

Journal ArticleDOI
28 Nov 2014-Science
TL;DR: Diversity of most fungal groups peaked in tropical ecosystems, but ectomycorrhizal fungi and several fungal classes were most diverse in temperate or boreal ecosystems, and manyfungal groups exhibited distinct preferences for specific edaphic conditions (such as pH, calcium, or phosphorus).
Abstract: Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.

2,346 citations