scispace - formally typeset
Search or ask a question
Author

Christopher J. Barrett

Bio: Christopher J. Barrett is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Catalysis & Alkane. The author has an hindex of 5, co-authored 6 publications receiving 3624 citations. Previous affiliations of Christopher J. Barrett include Wisconsin Alumni Research Foundation.

Papers
More filters
Journal ArticleDOI
21 Jun 2007-Nature
TL;DR: This catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel may diminish the authors' reliance on petroleum.
Abstract: With petrol prices on the rise, biofuels are big news these days. For applications in the transportation sector, perhaps the best known liquid biofuel is biomass-derived ethanol. But ethanol has its limitations: it is highly volatile, absorbs water and has a low energy density. A team from the University of Wisconsin-Madison has developed a two-step catalytic process that can convert fructose into a potentially better liquid biofuel, 2,5-dimethylfuran (DMF). This has 40%-higher energy density and a higher boiling point than ethanol, and is not water soluble. Fructose can be made directly from biomass or from glucose and although there's some work needed before DMF production can be made commercially viable, this new catalytic process looks promising. Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources1,2 into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

2,033 citations

Journal ArticleDOI
03 Jun 2005-Science
TL;DR: Liquid alkanes with the number of carbon atoms ranging from C7 to C15 were selectively produced from biomass-derived carbohydrates by acid-catalyzed dehydration, which was followed by aldol condensation over solid base catalysts to form large organic compounds.
Abstract: Liquid alkanes with the number of carbon atoms ranging from C7 to C15 were selectively produced from biomass-derived carbohydrates by acid-catalyzed dehydration, which was followed by aldol condensation over solid base catalysts to form large organic compounds. These molecules were then converted into alkanes by dehydration/hydrogenation over bifunctional catalysts that contained acid and metal sites in a four-phase reactor, in which the aqueous organic reactant becomes more hydrophobic and a hexadecane alkane stream removes hydrophobic species from the catalyst before they go on further to form coke. These liquid alkanes are of the appropriate molecular weight to be used as transportation fuel components, and they contain 90% of the energy of the carbohydrate and H2 feeds.

1,556 citations

Journal ArticleDOI
TL;DR: In this article, a bifunctional Pd/MgO-ZrO 2 catalyst was developed for the single-reactor, aqueous phase aldol-condensation and hydrogenation of carbohydrate-derived compounds, furfural and 5-hydroxymethylfurfural (HMF), leading to large water-soluble intermediates that can be converted to liquid alkanes.
Abstract: A bifunctional Pd/MgO-ZrO 2 catalyst was developed for the single-reactor, aqueous phase aldol-condensation and hydrogenation of carbohydrate-derived compounds, furfural and 5-hydroxymethylfurfural (HMF), leading to large water-soluble intermediates that can be converted to liquid alkanes. The cross aldol-condensation of these compounds with acetone results in formation of water-insoluble monomer (C 8 –C 9 ) and dimer (C 13 –C 15 ) product species, which are subsequently hydrogenated in the same batch reactor to form water-soluble products with high overall carbon yields (>80%). After a cycle of aldol-condensation followed by hydrogenation, the Pd/MgO-ZrO 2 catalyst undergoes a loss in selectivity by 18% towards heavier product (dimer) during subsequent runs. However, the catalytic activity and dimer selectivity are completely recovered when the catalyst is recycled with an intermediate calcination step at 873 K. The optimum temperatures for aldol-condensation of furfural with acetone and for condensation of HMF with acetone are 353 and 326 K, respectively, representing a balance between dimer selectivity and overall carbon yield for the process. The product selectivity can be controlled by the molar ratio of reactants. When the molar ratio of furfural-acetone increases from 1:9 to 1:1, the selectivity for the formation of dimer species increases by 31% and this selectivity increases further by 12% when the ratio increases from 1:1 to 2:1. It is likely that this active, stable, and heterogeneous catalyst system can be applied to other base and/or metal catalyzed reactions in the aqueous phase.

308 citations

Patent
05 Mar 2007
TL;DR: In this article, a catalytic process for converting biomass-derived carbohydrates to liquid alkanes, alkenes, and/or ethers is described, using combinations of self-and crossed-aldol condensation reactions, dehydration reactions, and hydrogenation reactions, over specified metal-containing catalysts.
Abstract: A catalytic process for converting biomass-derived carbohydrates to liquid alkanes, alkenes, and/or ethers is described. The process uses combinations of self- and crossed-aldol condensation reactions, dehydration reactions, and hydrogenation reactions, over specified metal-containing catalysts, to yield alkane, alkene, and ether products from carbohydrate reactants.

26 citations

Patent
05 Mar 2007
TL;DR: In this paper, a catalytic process for converting biomass-derived carbohydrates to liquid alkanes, alkenes, and/or ethers is described, using combinations of self-and crossed-aldol condensation reactions, dehydration reactions, and hydrogenation reactions, over specified metal-containing catalysts.
Abstract: A catalytic process for converting biomass-derived carbohydrates to liquid alkanes, alkenes, and/or ethers is described. The process uses combinations of self- and crossed-aldol condensation reactions, dehydration reactions, and hydrogenation reactions, over specified metal-containing catalysts, to yield alkane, alkene, and ether products from carbohydrate reactants.

9 citations


Cited by
More filters
Journal ArticleDOI
27 Jan 2006-Science
TL;DR: The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Abstract: Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy and biomaterials, and its enhanced use would address several societal needs. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally referred to as the biorefinery. The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.

5,344 citations

Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...

4,988 citations

Journal ArticleDOI
TL;DR: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,*,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries.
Abstract: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,‡,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries* †Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands ‡Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands DSM Innovative Synthesis BV, P.O. Box 18, 6160 MD Geleen, the Netherlands Department of Chemical Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia

2,267 citations

Journal ArticleDOI
TL;DR: This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts to examine critically the green character of conversion processes.
Abstract: This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).

2,077 citations