scispace - formally typeset
Search or ask a question
Author

Christopher J. Evans

Bio: Christopher J. Evans is an academic researcher from University of North Carolina at Charlotte. The author has contributed to research in topics: Machining & NIST. The author has an hindex of 28, co-authored 108 publications receiving 4815 citations. Previous affiliations of Christopher J. Evans include National Institute of Standards and Technology.
Topics: Machining, NIST, Tool wear, Grinding, Diamond


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the chemical modification of hydrogen-passivated n-Si surfaces by a scanning tunneling microscope (STM) operating in air is reported, and the modified surface regions have been characterized by STM spectroscopy, scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (TOF SIMS), and chemical etch/Nomarski microscopy.
Abstract: The chemical modification of hydrogen‐passivated n‐Si (111) surfaces by a scanning tunneling microscope (STM) operating in air is reported. The modified surface regions have been characterized by STM spectroscopy, scanning electron microscopy (SEM), time‐of‐flight secondary‐ion mass spectrometry (TOF SIMS), and chemical etch/Nomarski microscopy. Comparison of STM images with SEM, TOF SIMS, and optical information indicates that the STM contrast mechanism of these features arises entirely from electronic structure effects rather than from topographical differences between the modified and unmodified substrate. No surface modification was observed in a nitrogen ambient. Direct writing of features with 100 nm resolution was demonstrated. The permanence of these features was verified by SEM imaging after three months storage in air. The results suggest that field‐enhanced oxidation/diffusion occurs at the tip‐substrate interface in the presence of oxygen.

723 citations

Journal ArticleDOI
TL;DR: Freeform optics is the next generation of modern optics, bringing advantages of excellent optical performance and system integration as mentioned in this paper, and finds wide applications in various fields, such as new energy, illumination, aerospace and biomedical engineering.

638 citations

Journal ArticleDOI
TL;DR: A partial survey of methods for dimensional metrology, their ranges of application, and their limits is presented in the hope that this may provide the basis for development of “new” methods.

378 citations

Journal ArticleDOI
TL;DR: This paper attempts to define “structured” surfaces, and then to provide examples of such surfaces for a variety of applications, to help designers create novel functions or combinations of functions.

349 citations

Journal ArticleDOI
TL;DR: In this paper, a hypothesis is proposed that ascribes chemical wear of diamond tools to the presence of unpaired d electrons in the sample being machined, which is used to explain a range of results for metals, alloys, and other materials including “electroless” nickel.
Abstract: A hypothesis is proposed that ascribes chemical wear of diamond tools to the presence of unpaired d electrons in the sample being machined. This hypothesis is used to explain a range of results for metals, alloys, and other materials including “electroless” nickel. The hypothesis is further tested by experiments presented here on the machining of a range of high purity elements. The implications for diamond turnability of other materials are discussed.

298 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of machining induced surface integrity in titanium and nickel alloys and conclude that further modeling studies are needed to create predictive physics-based models that is in good agreement with reliable experiments.
Abstract: Titanium and nickel alloys represent a significant metal portion of the aircraft structural and engine components. When these critical structural components in aerospace industry are manufactured with the objective to reach high reliability levels, surface integrity is one of the most relevant parameters used for evaluating the quality of finish machined surfaces. The residual stresses and surface alteration (white etch layer and depth of work hardening) induced by machining of titanium alloys and nickel-based alloys are very critical due to safety and sustainability concerns. This review paper provides an overview of machining induced surface integrity in titanium and nickel alloys. There are many different types of surface integrity problems reported in literature, and among these, residual stresses, white layer and work hardening layers, as well as microstructural alterations can be studied in order to improve surface qualities of end products. Many parameters affect the surface quality of workpieces, and cutting speed, feed rate, depth of cut, tool geometry and preparation, tool wear, and workpiece properties are among the most important ones worth to investigate. Experimental and empirical studies as well as analytical and Finite Element modeling based approaches are offered in order to better understand machining induced surface integrity. In the current state-of-the-art however, a comprehensive and systematic modeling approach based on the process physics and applicable to the industrial processes is still missing. It is concluded that further modeling studies are needed to create predictive physics-based models that is in good agreement with reliable experiments, while explaining the effects of many parameters, for machining of titanium alloys and nickel-based alloys.

986 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the fundamentals of numerical error compensation and the available methods for measuring the geometrical errors of a machine and discuss the uncertainties involved in different mapping methods and their application characteristics.
Abstract: For measuring machines and machine tools, geometrical accuracy is a key performance criterion. While numerical compensation is well established for CMMs, it is increasingly used on machine tools in addition to mechanical accuracy. This paper is an update on the CIRP keynote paper by Sartori and Zhang from 1995 [Sartori S, Zhang GX (1995) Geometric error measurement and compensation of machines, Annals of the CIRP 44(2):599–609]. Since then, numerical error compensation has gained immense importance for precision machining. This paper reviews the fundamentals of numerical error compensation and the available methods for measuring the geometrical errors of a machine. It discusses the uncertainties involved in different mapping methods and their application characteristics. Furthermore, the challenges for the use of numerical compensation for manufacturing machines are specified. Based on technology and market development, this work aims at giving a perspective for the role of numerical compensation in the future.

833 citations

Journal ArticleDOI
TL;DR: A three-year study by the CIRP's Collaborative Working Group on Surface Integrity and Functional Performance of Components as discussed by the authors reported recent progress in experimental and theoretical investigations on surface integrity in material removal processes.

769 citations

Journal ArticleDOI
TL;DR: In this article, the main drivers, developments and future requirements in the field of micromanufacturing as related to the machining process from the perspective of the recent research and development literature are reviewed.

738 citations