scispace - formally typeset
Search or ask a question
Author

Christopher J. Fielding

Bio: Christopher J. Fielding is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Cholesterol & Lipoprotein. The author has an hindex of 52, co-authored 104 publications receiving 10508 citations. Previous affiliations of Christopher J. Fielding include University of British Columbia & Lawrence Livermore National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The removal of cholesterol from cells, like its delivery, appears to be specific and well regulated, and RCT can now be understood in molecular terms.

1,509 citations

Journal ArticleDOI
TL;DR: One of the major proteins present gave a maximal rate of esterification similar to that found with the native lipoprotein, while the other major lipop protein was inactive as a cofactor but significantly reduced activity produced by the cofactor protein.

700 citations

Journal ArticleDOI
TL;DR: The data suggest that a significant part of cell-derived cholesterol is transferred specifically to a pre-beta-migrating lipoprotein A-I species as part of a cholesterol transport transfer sequence in plasma.
Abstract: Cultures of human skin fibroblasts were labeled to high cholesterol specific activity with [3H]cholesterol and incubated briefly (1-3 min) with normal human plasma. The plasma was fractionated by two-dimensional agarose-polyacrylamide gel electrophoresis and the early appearance of cholesterol label among plasma lipoproteins determined. A major part of the label at 1-min incubation was in a pre-beta-migrating apo A-I lipoprotein fraction with a molecular weight of ca. 70,000. Label was enriched about 30-fold in this fraction relative to its content of apo A-I (1-2% of total apo A-I). The proportion of label in this lipoprotein was strongly correlated with its concentration in plasma. Further incubation (2 min) in the presence of unlabeled cells demonstrated transfer of label from this fraction to a higher molecular weight pre-beta apo A-I species, to low-density lipoprotein, and to the alpha-migrating apo A-I that made up the bulk (96%) of total apo A-I in plasma. The data suggest that a significant part of cell-derived cholesterol is transferred specifically to a pre-beta-migrating lipoprotein A-I species as part of a cholesterol transport transfer sequence in plasma.

645 citations

Journal ArticleDOI
TL;DR: Rat livers perfused without added plasma proteins suggest that the liver secretes disk-shaped lipid bilayer particles which represent both the nascent form of high density lipoproteins and preferred substrate for lecithin-cholesterol acyltransferase.
Abstract: Rat livers were perfused for 6 h without added plasma proteins using washed erythrocytes and buffer in a recirculating system. An inhibitor to the enzyme lecithin-cholesterol acyltransferase (5,5'-dithionitrobenzoic acid) was added in some experiments to prevent modification of substrate-lipids contained in secreted lipoproteins. The inhibitor did not detectably alter hepatic ultrastructure or gas exchange, but it inhibited the secreted lecithin-cholesterol acyltransferase by more than 85%. Very low density lipoproteins in perfusate were unaltered but the high density lipoproteins obtained from livers perfused with the inhibitor appeared disk-shaped in negative stain by electron microscopy with a mean edge thickness of 46 +/- 5 A and a mean diameter of 190 +/- 25 A. The high density lipoproteins were composed predominantly of polar lipids and protein with only small amounts of cholesteryl esters and triglycerides. The major apoprotein of these discoidal fractions had the same electrophoretic mobility as the arginine-rich apoprotein, whereas plasma high density lipoproteins contained mainly the A-I approtein. In all these respects the discoidal perfusate high density lipoproteins closely resemble those found in human plasma which is deficient in lecithin-cholesterol acyltransferase. Perfusate high density lipoproteins obtained in the absence of the enzyme inhibitor more closely resembled plasma high density lipoproteins in chemical composition (content of cholesteryl esters and apoproteins) and in electron microscopic appearance. Purified lecithin-cholesterol acyltransferase synthesized cholesteryl esters at a substantially faster rate from substrate lipids of perfusate high density lipoproteins than those from plasma. The discoidal high density lipoproteins were the best substrate for this reaction. Thin sections of plasma high density lipoproteins indicated a spherical particle whereas discoidal high density lipoproteins stained with the characteristic trilaminar image of membranes. These observations suggest that the liver secretes disk-shaped lipid bilayer particles which represent both the nascent form of high density lipoproteins and preferred substrate for lecithin-cholesterol acyltransferase.

524 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The effects of dietary fats on total:HDL cholesterol may differ markedly from their effects on LDL, and the effects of fats on these risk markers should not in themselves be considered to reflect changes in risk but should be confirmed by prospective observational studies or clinical trials.

2,548 citations

Journal ArticleDOI
26 Jan 1996-Science
TL;DR: It is shown that the class B scavenger receptor SR-BI is an HDL receptor, which mediates selective cholesterol uptake by a mechanism distinct from the classic LDL receptor pathway.
Abstract: High density lipoprotein (HDL) and low density lipoprotein (LDL) are cholesterol transport particles whose plasma concentrations are directly (LDL) and inversely (HDL) correlated with risk for atherosclerosis. LDL catabolism involves cellular uptake and degradation of the entire particle by a well-characterized receptor. HDL, in contrast, selectively delivers its cholesterol, but not protein, to cells by unknown receptors. Here it is shown that the class B scavenger receptor SR-BI is an HDL receptor. SR-BI binds HDL with high affinity, is expressed primarily in liver and nonplacental steroidogenic tissues, and mediates selective cholesterol uptake by a mechanism distinct from the classic LDL receptor pathway.

2,315 citations

Journal ArticleDOI
TL;DR: The ATP-binding cassette (ABC) transporters are essential for many processes in the cell and mutations in these genes cause or contribute to several human genetic disorders including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response.

2,159 citations

Journal ArticleDOI
TL;DR: Caveolae constitute an entire membrane system with multiple functions essential for the cell and are capable of importing molecules and delivering them to specific locations within the cell, exporting molecules to extracellular space, and compartmentalizing a variety of signaling activities.
Abstract: The cell biology of caveolae is a rapidly growing area of biomedical research. Caveolae are known primarily for their ability to transport molecules across endothelial cells, but modern cellular techniques have dramatically extended our view of caveolae. They form a unique endocytic and exocytic compartment at the surface of most cells and are capable of importing molecules and delivering them to specific locations within the cell, exporting molecules to extracellular space, and compartmentalizing a variety of signaling activities. They are not simply an endocytic device with a peculiar membrane shape but constitute an entire membrane system with multiple functions essential for the cell. Specific diseases attack this system: Pathogens have been identified that use it as a means of gaining entrance to the cell. Trying to understand the full range of functions of caveolae challenges our basic instincts about the cell.

1,987 citations

Journal ArticleDOI
TL;DR: The most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation is presented.
Abstract: The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation.

1,799 citations