scispace - formally typeset
Search or ask a question
Author

Christopher J. Kiely

Bio: Christopher J. Kiely is an academic researcher from Lehigh University. The author has contributed to research in topics: Catalysis & Hydrogen peroxide. The author has an hindex of 84, co-authored 374 publications receiving 29156 citations. Previous affiliations of Christopher J. Kiely include Rice University & University of Liverpool.


Papers
More filters
Journal ArticleDOI
20 Jan 2006-Science
TL;DR: It is shown that Au/Pd-TiO2 catalysts give very high turnover frequencies (up to 270,000 turnovers per hour) for the oxidation of alcohols, including primary alkyl alcohols and the addition of Au to Pd nanocrystals improved the overall selectivity.
Abstract: The oxidation of alcohols to aldehydes with O2 in place of stoichiometric oxygen donors is a crucial process for the synthesis of fine chemicals. However, the catalysts that have been identified so far are relatively inactive with primary alkyl alcohols. We showed that Au/Pd-TiO2 catalysts give very high turnover frequencies (up to 270,000 turnovers per hour) for the oxidation of alcohols, including primary alkyl alcohols. The addition of Au to Pd nanocrystals improved the overall selectivity and, using scanning transmission electron microscopy combined with x-ray photoelectron spectroscopy, we showed that the Au-Pd nanocrystals were made up of a Au-rich core with a Pd-rich shell, indicating that the Au electronically influences the catalytic properties of Pd.

1,907 citations

Journal ArticleDOI
05 Sep 2008-Science
TL;DR: High catalytic activity for carbon monoxide oxidation is correlated with the presence of bilayer clusters that are ∼0.5 nanometer in diameter and contain only ∼10 gold atoms, consistent with that demonstrated previously with the use of model catalyst systems.
Abstract: Gold nanocrystals absorbed on metal oxides have exceptional properties in oxidation catalysis, including the oxidation of carbon monoxide at ambient temperatures, but the identification of the active catalytic gold species among the many present on real catalysts is challenging. We have used aberration-corrected scanning transmission electron microscopy to analyze several iron oxide–supported catalyst samples, ranging from those with little or no activity to others with high activities. High catalytic activity for carbon monoxide oxidation is correlated with the presence of bilayer clusters that are ∼0.5 nanometer in diameter and contain only ∼10 gold atoms. The activity of these bilayer clusters is consistent with that demonstrated previously with the use of model catalyst systems.

1,383 citations

Journal ArticleDOI
TL;DR: Stable functionalised gold nanoparticles are prepared by simultaneous reduction of tetrachloroaurate ions and attachment of bifunctional organic thiol molecules to the growing gold nuclei leading to a material whose chemical behaviour is characterised by the vacant functionality of the bifunctionsal thiol ligand.
Abstract: Stable functionalised gold nanoparticles are prepared by simultaneous reduction of tetrachloroaurate ions and attachment of bifunctional organic thiol molecules to the growing gold nuclei leading to a material whose chemical behaviour is characterised by the vacant functionality of the bifunctional thiol ligand.

1,036 citations

Journal ArticleDOI
20 Oct 2005-Nature
TL;DR: It is shown that nanocrystalline gold catalysts can provide tunable active catalysts for the oxidation of alkenes using air, with exceptionally high selectivity to partial oxidation products and significant conversions.
Abstract: Oxidation is an important method for the synthesis of chemical intermediates in the manufacture of high-tonnage commodities, high-value fine chemicals, agrochemicals and pharmaceuticals: but oxidations are often inefficient. The introduction of catalytic systems using oxygen from air is preferred for 'green' processing. Gold catalysis is now showing potential in selective redox processes, particularly for alcohol oxidation and the direct synthesis of hydrogen peroxide. However, a major challenge that persists is the synthesis of an epoxide by the direct electrophilic addition of oxygen to an alkene. Although ethene is epoxidized efficiently using molecular oxygen with silver catalysts in a large-scale industrial process, this is unique because higher alkenes can only be effectively epoxidized using hydrogen peroxide, hydroperoxides or stoichiometric oxygen donors. Here we show that nanocrystalline gold catalysts can provide tunable active catalysts for the oxidation of alkenes using air, with exceptionally high selectivity to partial oxidation products ( approximately 98%) and significant conversions. Our finding significantly extends the discovery by Haruta that nanocrystalline gold can epoxidize alkenes when hydrogen is used to activate the molecular oxygen; in our case, no sacrificial reductant is needed. We anticipate that our finding will initiate attempts to understand more fully the mechanism of oxygen activation at gold surfaces, which might lead to commercial exploitation of the high redox activity of gold nanocrystals.

931 citations

Journal ArticleDOI
TL;DR: A specific objective of this review article is to motivate researchers to synthesize some of the "designer" bimetallic catalysts with specific nanostructures, inspired from recent advances in the area of materials chemistry, and to utilize them for the transformation of biomass derived materials that are very complex and pose different challenges compared to those of simple organic molecules.
Abstract: This Critical Review provides an overview of the recent developments in the synthesis and characterization of bimetallic nanoparticles. Initially the review follows a materials science perspective on preparing bimetallic nanoparticles with designer morphologies, after which the emphasis shifts towards recent developments in using these bimetallic particles for catalysing either oxidation or reduction. In the final part of this review we present an overview of the utilization of bimetallic catalyst systems for the transformation of bio-renewable substrates and reactions related to the realization of a bio-refinery. Because of the sheer number of examples of transformations in this area, a few key examples, namely selective oxidation, hydrogenation/hydrogenolysis and reforming of biomass derived molecules, have been chosen for this review. Reports of bimetallic catalysts being used for the aforementioned transformations are critically analysed and the potential for exploiting such bimetallic catalysts have also been highlighted. A specific objective of this review article is to motivate researchers to synthesize some of the “designer” bimetallic catalysts with specific nanostructures, inspired from recent advances in the area of materials chemistry, and to utilize them for the transformation of biomass derived materials that are very complex and pose different challenges compared to those of simple organic molecules. We consider that supported bimetallic nanoparticles have an important role to play as catalysts in our quest for a more green and sustainable society.

923 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
15 Aug 1996-Nature
TL;DR: A method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition is described.
Abstract: COLLOIDAL particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties1–4 that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectro-scopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods2–4. A great deal of control can now be exercised over the chemical composition, size and polydis-persity1,2 of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligo-nucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.

6,188 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of diamond-like carbon.
Abstract: Diamond-like carbon (DLC) is a metastable form of amorphous carbon with significant sp3 bonding. DLC is a semiconductor with a high mechanical hardness, chemical inertness, and optical transparency. This review will describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of DLCs. The films have widespread applications as protective coatings in areas, such as magnetic storage disks, optical windows and micro-electromechanical devices (MEMs).

5,400 citations