scispace - formally typeset
Search or ask a question
Author

Christopher J. Kim

Bio: Christopher J. Kim is an academic researcher from Salk Institute for Biological Studies. The author has contributed to research in topics: Genome & Genomics. The author has an hindex of 2, co-authored 2 publications receiving 5115 citations.

Papers
More filters
Journal ArticleDOI
01 Aug 2003-Science
TL;DR: Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels, and insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
Abstract: Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.

5,227 citations

Journal ArticleDOI
TL;DR: This protocol describes an adapter ligation-mediated PCR method that has been used to screen a mutant library and identify over 150,000 T-DNA insertional mutants; the method can also be applied to map individual mutants.
Abstract: Agrobacterium transfer DNA (T-DNA) is an effective plant mutagen that has been used to create sequence-indexed T-DNA insertion lines in Arabidopsis thaliana as a tool to study gene function. Creating T-DNA insertion lines requires a dependable method for locating the site of insertion in the genome. In this protocol, we describe an adapter ligation-mediated PCR method that we have used to screen a mutant library and identify over 150,000 T-DNA insertional mutants; the method can also be applied to map individual mutants. The procedure consists of three steps: a restriction enzyme-mediated ligation of an adapter to the genomic DNA; a PCR amplification of the T-DNA/genomic DNA junction with primers specific to the adapter and T-DNA; and sequencing of the T-DNA/genomic junction to enable mapping to the reference genome. In most cases, the sequenced genomic region extends to the T-DNA border, enabling the exact location of the insert to be identified. The entire process takes 2 weeks to complete.

129 citations


Cited by
More filters
Journal ArticleDOI
Takashi Matsumoto1, Jianzhong Wu1, Hiroyuki Kanamori1, Yuichi Katayose1  +262 moreInstitutions (25)
11 Aug 2005-Nature
TL;DR: A map-based, finished quality sequence that covers 95% of the 389 Mb rice genome, including virtually all of the euchromatin and two complete centromeres, and finds evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes.
Abstract: Rice, one of the world's most important food plants, has important syntenic relationships with the other cereal species and is a model plant for the grasses. Here we present a map-based, finished quality sequence that covers 95% of the 389 Mb genome, including virtually all of the euchromatin and two complete centromeres. A total of 37,544 non-transposable-element-related protein-coding genes were identified, of which 71% had a putative homologue in Arabidopsis. In a reciprocal analysis, 90% of the Arabidopsis proteins had a putative homologue in the predicted rice proteome. Twenty-nine per cent of the 37,544 predicted genes appear in clustered gene families. The number and classes of transposable elements found in the rice genome are consistent with the expansion of syntenic regions in the maize and sorghum genomes. We find evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes. The map-based sequence has proven useful for the identification of genes underlying agronomic traits. The additional single-nucleotide polymorphisms and simple sequence repeats identified in our study should accelerate improvements in rice production.

3,423 citations

Journal ArticleDOI
22 Apr 2005-Cell
TL;DR: Data support a model in which miRNA-guided formation of a 5' or 3' terminus within pre-ta-siRNA transcripts, followed by RDR6-dependent formation of dsRNA and Dicer-like processing, yields phased ta-siRNAs that negatively regulate other genes.

2,124 citations

Journal ArticleDOI
09 Aug 2007-Nature
TL;DR: The identification of JASMONATE-INSENSITIVE 3 (JAI3) and a family of related proteins named JAZ (jasmonate ZIM-domain), in Arabidopsis thaliana and the existence of a regulatory feed-back loop involving MYC2 and JAZ proteins, which provides a mechanistic explanation for the pulsed response to jasmonate and the subsequent desensitization of the cell.
Abstract: Jasmonates are essential phytohormones for plant development and survival. However, the molecular details of their signalling pathway remain largely unknown. The identification more than a decade ago of COI1 as an F-box protein suggested the existence of a repressor of jasmonate responses that is targeted by the SCF(COI1) complex for proteasome degradation in response to jasmonate. Here we report the identification of JASMONATE-INSENSITIVE 3 (JAI3) and a family of related proteins named JAZ (jasmonate ZIM-domain), in Arabidopsis thaliana. Our results demonstrate that JAI3 and other JAZs are direct targets of the SCF(COI1) E3 ubiquitin ligase and jasmonate treatment induces their proteasome degradation. Moreover, JAI3 negatively regulates the key transcriptional activator of jasmonate responses, MYC2. The JAZ family therefore represents the molecular link between the two previously known steps in the jasmonate pathway. Furthermore, we demonstrate the existence of a regulatory feed-back loop involving MYC2 and JAZ proteins, which provides a mechanistic explanation for the pulsed response to jasmonate and the subsequent desensitization of the cell.

1,991 citations

Journal ArticleDOI
TL;DR: It was concluded that the major functional diversification within the ERF family predated the monocot/dicot divergence and might have been due to chromosomal/segmental duplication and tandem duplication, as well as more ancient transposition and homing.
Abstract: Genes in the ERF family encode transcriptional regulators with a variety of functions involved in the developmental and physiological processes in plants. In this study, a comprehensive computational analysis identified 122 and 139 ERF family genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L. subsp. japonica), respectively. A complete overview of this gene family in Arabidopsis is presented, including the gene structures, phylogeny, chromosome locations, and conserved motifs. In addition, a comparative analysis between these genes in Arabidopsis and rice was performed. As a result of these analyses, the ERF families in Arabidopsis and rice were divided into 12 and 15 groups, respectively, and several of these groups were further divided into subgroups. Based on the observation that 11 of these groups were present in both Arabidopsis and rice, it was concluded that the major functional diversification within the ERF family predated the monocot/dicot divergence. In contrast, some groups/subgroups are species specific. We discuss the relationship between the structure and function of the ERF family proteins based on these results and published information. It was further concluded that the expansion of the ERF family in plants might have been due to chromosomal/segmental duplication and tandem duplication, as well as more ancient transposition and homing. These results will be useful for future functional analyses of the ERF family genes.

1,758 citations

Journal ArticleDOI
19 May 2006-Cell
TL;DR: It is shown that flagellin and EF-Tu activate a common set of signaling events and defense responses but without clear synergistic effects, and that plant defense responses induced by PAMPs such as EF- Tu reduce transformation by Agrobacterium.

1,758 citations