scispace - formally typeset
Search or ask a question
Author

Christopher J L Murray

Bio: Christopher J L Murray is an academic researcher from Institute for Health Metrics and Evaluation. The author has contributed to research in topics: Population & Mortality rate. The author has an hindex of 209, co-authored 754 publications receiving 310329 citations. Previous affiliations of Christopher J L Murray include Harvard University & University of Washington.


Papers
More filters
Journal ArticleDOI
TL;DR: Hu et al. as discussed by the authors presented evidence from four countries on the number of people fatally injured by drivers with blood alcohol concentrations (BACs) above various thresholds, and compared these estimates to estimated alcohol-attributable fatalities from the 2010 Global Burden of Disease (GBD) study.

3 citations

Posted ContentDOI
08 Mar 2023-medRxiv
TL;DR: In this article , a range of potential variant-level characteristics were used to provide global forecasts of infections, hospitalisations, and deaths in the face of ongoing Omicron-related transmission and waning levels of past immunity.
Abstract: Background The recent Omicron-related waves of the COVID-19 pandemic have resulted in unprecedented levels of population transmission due to the variant's high level of infectiousness across most of the world. China, the last large country to end its "zero-COVID" policies, is currently facing its own massive Omicron-related wave, and the final impact of that wave remains uncertain. We have seen repeatedly that the epidemiological characteristics of new variants can have profound impacts on global health outcomes. While the characteristics of these new variants are difficult to predict ahead of their emergence, considering the impact of potential future scenarios is of central importance for prudent planning and policy making. This paper samples across a range of potential variant-level characteristics to provide global forecasts of infections, hospitalisations, and deaths in the face of ongoing Omicron-related transmission and waning levels of past immunity and evaluates a range of interventions that may diminish the impact of future waves. Methods We created a susceptible-exposed-infectious dynamic model that accounts for vaccine uptake and effectiveness, antiviral administration, the emergence of new variants, and waning protection from both infection- and vaccine-derived immunity. Using this model, we first estimated past infections, hospitalisations, and deaths by variant, location, and day. We used these findings to more fully understand the global progression of the COVID-19 pandemic through December 12, 2022. Second, we forecasted these same outcome measures under five potential variant emergence scenarios. Third, we evaluated three different interventions in isolation and in concert within each potential variant scenario, to assess the impact of available intervention strategies through June 30, 2023. Findings We estimated that from November 15, 2021, through December 12, 2022, there were 8.60 billion (95% uncertainty interval [UI] 6.37-11.7) SARS-CoV-2 infections, 13.1 million (10.6-16.5) hospitalisations, and 3.04 million (2.65-3.55) deaths, the majority of which were attributable to Omicron variants (98.5% [97.4-99.1] of infections, 82.6% [76.7-86.3] of hospitalisations, and 72.4% [66.4-76.0] of deaths). Compared to the pre-Omicron pandemic period from January 1, 2020, to November 15, 2021, we estimated that there were more than twice as many infections (214% [163-286]) globally from November 15, 2021, to December 12, 2022, but only 20.6% (19.8-21.4) of the estimated deaths. The massive Omicron waves and high vaccination rates in many high-income countries have together contributed to high levels of immunity against SARS-CoV-2 infection, leaving only 97.3% (96.3-98.2) of the global population with no protection as of December 1, 2022. Concurrently, however, China, where only 17.6% [5.28-34.8] of the population have ever experienced infection due to its zero-COVID policy, requires special attention over the next few months, as all our future scenarios predict substantial increases in transmission, hospitalisation, and death in China in now that zero-COVID policies have been relaxed. Under the future scenario we consider most plausible (a scenario with another new Omicron-like variant emerging and reference levels of the drivers of transmission), we estimated there will be an additional 5.19 billion (3.11-7.78) infections, 13.6 million (8.50-21.8) hospitalisations, and 2.74 million (1.40-5.68) deaths between December 12, 2022, and June 30, 2023, with the Western Pacific region projected to sustain the highest rates of additional deaths, driven primarily by the uncontained outbreak in China. By comparison, a baseline scenario in which no new variant emerges results in 3.54 billion (2.24-5.43) infections, 6.26 million (4.11-9.65) hospitalisations, and 1.58 million (0.829-3.95) deaths in the same forecast period. The ability for a new variant to break through past infection- and vaccine-derived immunity greatly influences future outcomes: we estimate a new variant with the high severity of Delta, but correspondingly moderate immunity breakthrough rates will have difficulty overtaking current variants and will result in similar outcomes to the Omicron-like variant scenario with 3.64 billion (2.26-5.83) new infections, 7.87 million (4.81-13.0) new hospitalisations, and 2.87 million (1.03-5.56) new deaths. Finally, if we consider a variant that combines the high infectiousness and breakthrough rates of Omicron with the high severity of Delta, we again estimate 5.19 billion (3.11-7.78) new infections, but due to the presumed increase in severe outcomes, we estimate 30.2 million (13.4-51.2) new hospitalisations and 15.9 million (4.31-35.9) deaths over the forecasted period. The impacts of interventions vary by variant characteristics and region of the world, with increased mask usage and reimplementation of some mandates having massive impact in some regions while having less impact in others. Finally, assuming variant spread was as rapid as observed for Omicron, we find almost no impact of a rapidly developed and deployed variant-targeted booster. Interpretation As infection-derived and vaccine-conferred protection wanes, we expect infections to rise, but as most of the world's population has some level of immunity to SARS-CoV-2 as of December 12, 2022, all but the most pessimistic forecasts in this analysis do not predict a massive global surge by June 30, 2023. Paradoxically, China, due to its lower levels of population immunity and effective vaccination will likely experience substantial numbers of infections and deaths that, due to its large population size, will adversely affect the global toll. This could be substantially mitigated by existing intervention options including masking, vaccination, health-care preparedness, and effective antiviral compounds for those at most at risk of poor outcomes. While still resulting in morbidity and mortality, this endemic transmission provides protection from less transmissible variants and particularly protects against sub-lineages of the more severe pre-Omicron variants. In the scenarios where a new variant does emerge and spread globally, however, the speed of this spread may be too fast to rely on even the most quickly developed mRNA vaccines to provide protection soon enough. Existing vaccines and boosters have played an important role in increasing immunity worldwide, but the continued contribution of mask usage (both past and future) in the prevention of infection and death cannot be understated. The characteristics of future COVID-19 variants are inherently difficult to predict, and our forecasts do show considerable differences in outcomes as a function of these variant properties. Given the uncertainty surrounding what type of variant will next emerge, the world would be wise to remain vigilant in 2023 as we move to the next phase of the COVID-19 pandemic.

3 citations

01 Jan 1995
TL;DR: The Modelo for Asignar Recursos of Salud (MARS) as mentioned in this paper is a model that integrates datos sobre the efectividad en funcion del costo and the carga de enfermeakd.
Abstract: Se examina la funcion de la infraestructura de los sistemas de salud en los estudios analiticos de efectividad en funcion del costo y asignacion de recursos de salud, y se revisan algunos analisis de efectividad en funcion del costo en el sector salud realizados con anterioridad. Se senalan dos d(ficultades importantes relacionadas con la naturaleza de los costos del sistema de salud y la eleccion de las politicas. En primer lugal; el problema de la infraestructura del sistema de salud puede abordarse recurriendo a modelos computadorizados comn el Modelo para Asignar Recursos de Salud (MARS), desarrollado en hkroard, que integra datos sobre la efectividad en funcion del costo y de la carga de enfermeakd. Se observo que un modelo que considera la expansion de la infraestructura de salud produce casi $O% mas de anos de vida ajustados en funcion de la discapacidad totales para un hipotetico pais del Africa subsahariana que un modelo que soslaya dicha expansion. Si se desea difundir la utilizacion de las bases de datos sobre la efectividad en funcion del costo para asignar los recursos en el sector salud, sera preciso que los analisis de la efectividad en funcion akl costo pasen de aportar informacion sobre costosa notificar funciones de produccion. En segundo lugal; con estos instrumentos es posible analizar tres interrogantes concretos sobre politicas, cada uno de ellos con sus propios insumos y restricciones: la asignacion cuando el presupuesto y la infraestructura de salud son fijos, cuando hay recursos para una expansion marginal y cuando existen restricciones politicas para expandir los recursos. Para que no se confunda el interrogante que se esta abordando, es necesario desarrollar un metodo congruente y riguroso destinado a utilizar los datos de efictividad en funcion del costo para orientar la asignacion de recursos.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Abstract: The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.

52,293 citations

Journal ArticleDOI
TL;DR: A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Abstract: Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.

23,203 citations

Journal ArticleDOI
TL;DR: The results for 20 world regions are presented, summarizing the global patterns for the eight most common cancers, and striking differences in the patterns of cancer from region to region are observed.
Abstract: Estimates of the worldwide incidence and mortality from 27 cancers in 2008 have been prepared for 182 countries as part of the GLOBOCAN series published by the International Agency for Research on Cancer. In this article, we present the results for 20 world regions, summarizing the global patterns for the eight most common cancers. Overall, an estimated 12.7 million new cancer cases and 7.6 million cancer deaths occur in 2008, with 56% of new cancer cases and 63% of the cancer deaths occurring in the less developed regions of the world. The most commonly diagnosed cancers worldwide are lung (1.61 million, 12.7% of the total), breast (1.38 million, 10.9%) and colorectal cancers (1.23 million, 9.7%). The most common causes of cancer death are lung cancer (1.38 million, 18.2% of the total), stomach cancer (738,000 deaths, 9.7%) and liver cancer (696,000 deaths, 9.2%). Cancer is neither rare anywhere in the world, nor mainly confined to high-resource countries. Striking differences in the patterns of cancer from region to region are observed.

21,040 citations

Journal ArticleDOI
TL;DR: It is recommended that spirometry is required for the clinical diagnosis of COPD to avoid misdiagnosis and to ensure proper evaluation of severity of airflow limitation.
Abstract: Chronic obstructive pulmonary disease (COPD) remains a major public health problem. It is the fourth leading cause of chronic morbidity and mortality in the United States, and is projected to rank fifth in 2020 in burden of disease worldwide, according to a study published by the World Bank/World Health Organization. Yet, COPD remains relatively unknown or ignored by the public as well as public health and government officials. In 1998, in an effort to bring more attention to COPD, its management, and its prevention, a committed group of scientists encouraged the U.S. National Heart, Lung, and Blood Institute and the World Health Organization to form the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Among the important objectives of GOLD are to increase awareness of COPD and to help the millions of people who suffer from this disease and die prematurely of it or its complications. The first step in the GOLD program was to prepare a consensus report, Global Strategy for the Diagnosis, Management, and Prevention of COPD, published in 2001. The present, newly revised document follows the same format as the original consensus report, but has been updated to reflect the many publications on COPD that have appeared. GOLD national leaders, a network of international experts, have initiated investigations of the causes and prevalence of COPD in their countries, and developed innovative approaches for the dissemination and implementation of COPD management guidelines. We appreciate the enormous amount of work the GOLD national leaders have done on behalf of their patients with COPD. Despite the achievements in the 5 years since the GOLD report was originally published, considerable additional work is ahead of us if we are to control this major public health problem. The GOLD initiative will continue to bring COPD to the attention of governments, public health officials, health care workers, and the general public, but a concerted effort by all involved in health care will be necessary.

17,023 citations

Journal ArticleDOI
TL;DR: Findings indicate that the "diabetes epidemic" will continue even if levels of obesity remain constant, and given the increasing prevalence of obesity, it is likely that these figures provide an underestimate of future diabetes prevalence.
Abstract: OBJECTIVE —The goal of this study was to estimate the prevalence of diabetes and the number of people of all ages with diabetes for years 2000 and 2030. RESEARCH DESIGN AND METHODS —Data on diabetes prevalence by age and sex from a limited number of countries were extrapolated to all 191 World Health Organization member states and applied to United Nations’ population estimates for 2000 and 2030. Urban and rural populations were considered separately for developing countries. RESULTS —The prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The prevalence of diabetes is higher in men than women, but there are more women with diabetes than men. The urban population in developing countries is projected to double between 2000 and 2030. The most important demographic change to diabetes prevalence across the world appears to be the increase in the proportion of people >65 years of age. CONCLUSIONS —These findings indicate that the “diabetes epidemic” will continue even if levels of obesity remain constant. Given the increasing prevalence of obesity, it is likely that these figures provide an underestimate of future diabetes prevalence.

16,648 citations