scispace - formally typeset
Search or ask a question
Author

Christopher J. Mungall

Bio: Christopher J. Mungall is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Ontology (information science) & Open Biomedical Ontologies. The author has an hindex of 76, co-authored 242 publications receiving 40589 citations. Previous affiliations of Christopher J. Mungall include Howard Hughes Medical Institute & J. Craig Venter Institute.


Papers
More filters
Journal ArticleDOI
03 Oct 2002-Nature
TL;DR: The genome sequence of P. falciparum clone 3D7 is reported, which is the most (A + T)-rich genome sequenced to date and is being exploited in the search for new drugs and vaccines to fight malaria.
Abstract: The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.

4,312 citations

Journal ArticleDOI
Midori A. Harris, Jennifer I. Clark1, Ireland A1, Jane Lomax1, Michael Ashburner2, Michael Ashburner1, R. Foulger1, R. Foulger2, Karen Eilbeck1, Karen Eilbeck3, Suzanna E. Lewis1, Suzanna E. Lewis3, B. Marshall1, B. Marshall3, Christopher J. Mungall3, Christopher J. Mungall1, J. Richter3, J. Richter1, Gerald M. Rubin1, Gerald M. Rubin3, Judith A. Blake1, Carol J. Bult1, Dolan M1, Drabkin H1, Janan T. Eppig1, Hill Dp1, L. Ni1, Ringwald M1, Rama Balakrishnan1, Rama Balakrishnan4, J. M. Cherry4, J. M. Cherry1, Karen R. Christie4, Karen R. Christie1, Maria C. Costanzo1, Maria C. Costanzo4, Selina S. Dwight1, Selina S. Dwight4, Stacia R. Engel1, Stacia R. Engel4, Dianna G. Fisk4, Dianna G. Fisk1, Jodi E. Hirschman1, Jodi E. Hirschman4, Eurie L. Hong4, Eurie L. Hong1, Robert S. Nash1, Robert S. Nash4, Anand Sethuraman1, Anand Sethuraman4, Chandra L. Theesfeld1, Chandra L. Theesfeld4, David Botstein1, David Botstein5, Kara Dolinski1, Kara Dolinski5, Becket Feierbach1, Becket Feierbach5, Tanya Z. Berardini6, Tanya Z. Berardini1, S. Mundodi6, S. Mundodi1, Seung Y. Rhee1, Seung Y. Rhee6, Rolf Apweiler1, Daniel Barrell1, Camon E1, E. Dimmer1, Lee1, Rex L. Chisholm, Pascale Gaudet7, Pascale Gaudet1, Warren A. Kibbe7, Warren A. Kibbe1, Ranjana Kishore1, Ranjana Kishore8, Erich M. Schwarz8, Erich M. Schwarz1, Paul W. Sternberg1, Paul W. Sternberg8, M. Gwinn1, Hannick L1, Wortman J1, Matthew Berriman1, Matthew Berriman9, Wood9, Wood1, de la Cruz N1, de la Cruz N10, Peter J. Tonellato10, Peter J. Tonellato1, Pankaj Jaiswal11, Pankaj Jaiswal1, Seigfried T1, Seigfried T12, White R13, White R1 
TL;DR: The Gene Ontology (GO) project as discussed by the authors provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences.
Abstract: The Gene Ontology (GO) project (http://www.geneontology.org/) provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences. Many model organism databases and genome annotation groups use the GO and contribute their annotation sets to the GO resource. The GO database integrates the vocabularies and contributed annotations and provides full access to this information in several formats. Members of the GO Consortium continually work collectively, involving outside experts as needed, to expand and update the GO vocabularies. The GO Web resource also provides access to extensive documentation about the GO project and links to applications that use GO data for functional analyses.

3,565 citations

Journal ArticleDOI
TL;DR: This work describes the OBO Foundry initiative and provides guidelines for those who might wish to become involved and describes an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality.
Abstract: The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or 'ontologies'. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium is pursuing a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing coordinated reform, and new ontologies are being created on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality. We describe this OBO Foundry initiative and provide guidelines for those who might wish to become involved.

2,492 citations

Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: It is shown that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity.
Abstract: Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

2,260 citations

Journal ArticleDOI
Seth Carbon1, Eric Douglass1, Nathan Dunn1, Benjamin M. Good1  +189 moreInstitutions (19)
TL;DR: GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models.
Abstract: The Gene Ontology resource (GO; http://geneontology.org) provides structured, computable knowledge regarding the functions of genes and gene products. Founded in 1998, GO has become widely adopted in the life sciences, and its contents are under continual improvement, both in quantity and in quality. Here, we report the major developments of the GO resource during the past two years. Each monthly release of the GO resource is now packaged and given a unique identifier (DOI), enabling GO-based analyses on a specific release to be reproduced in the future. The molecular function ontology has been refactored to better represent the overall activities of gene products, with a focus on transcription regulator activities. Quality assurance efforts have been ramped up to address potentially out-of-date or inaccurate annotations. New evidence codes for high-throughput experiments now enable users to filter out annotations obtained from these sources. GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models. We also provide the ‘GO ribbon’ widget for visualizing GO annotations to a gene; the widget can be easily embedded in any web page.

2,138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Abstract: Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.

35,225 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Details of the aims and methods of Bioconductor, the collaborative creation of extensible software for computational biology and bioinformatics, and current challenges are described.
Abstract: The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples.

12,142 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations