scispace - formally typeset
Search or ask a question
Author

Christopher Kadow

Other affiliations: German Climate Computing Centre
Bio: Christopher Kadow is an academic researcher from Free University of Berlin. The author has contributed to research in topics: Forecast skill & Computer science. The author has an hindex of 12, co-authored 25 publications receiving 481 citations. Previous affiliations of Christopher Kadow include German Climate Computing Centre.

Papers
More filters
Journal ArticleDOI
TL;DR: Mittelfristige Klimaprognose (MiKlip), an 8-yr German national research project on decadal climate prediction, is organized around a global prediction system comprising the Max Planck Institute Earth System Model (MPI-ESM) together with an initialization procedure and a model evaluation system.
Abstract: Mittelfristige Klimaprognose (MiKlip), an 8-yr German national research project on decadal climate prediction, is organized around a global prediction system comprising the Max Planck Institute Earth System Model (MPI-ESM) together with an initialization procedure and a model evaluation system. This paper summarizes the lessons learned from MiKlip so far; some are purely scientific, others concern strategies and structures of research that target future operational use.Three prediction system generations have been constructed, characterized by alternative initialization strategies; the later generations show a marked improvement in hindcast skill for surface temperature. Hindcast skill is also identified for multiyear-mean European summer surface temperatures, extratropical cyclone tracks, the quasi-biennial oscillation, and ocean carbon uptake, among others. Regionalization maintains or slightly enhances the skill in European surface temperature inherited from the global model and also displays h...

83 citations

Journal ArticleDOI
TL;DR: Large-scale diagnostics of the second major release of the ESMValTool tool, a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth system models participating in the Coupled Model Intercomparison Project (CMIP), are described.
Abstract: This research has been supported by Horizon 2020 (grant nos. 641816, 727862, 641727, and 824084), the Copernicus Climate Change Service (C3S) (Metrics and Access to Global Indices for Climate Projections, MAGIC), the Helmholtz Association (Advanced Earth System Model Evaluation for CMIP, EVal4CMIP), the Deutsche Forschungsgemeinschaft (grant no. 274762653), the Federal Ministry of Education and Research (BMBF) (grant no. CMIP6-DICAD), and the European Space Agency (ESA Climate Change Initiative Climate Model User Group, ESA CCI CMUG).

70 citations

Journal ArticleDOI
TL;DR: In this article, an image inpainting technique was proposed to reconstruct missing climate information and reduce uncertainties and biases in climate records, and the resulting global annual mean temperature time series exhibit high Pearson correlation coefficients (≥0.9941) and low root mean squared errors (≤0.0547) as compared with the original data.
Abstract: Historical temperature measurements are the basis of global climate datasets like HadCRUT4. This dataset contains many missing values, particularly for periods before the mid-twentieth century, although recent years are also incomplete. Here we demonstrate that artificial intelligence can skilfully fill these observational gaps when combined with numerical climate model data. We show that recently developed image inpainting techniques perform accurate monthly reconstructions via transfer learning using either 20CR (Twentieth-Century Reanalysis) or the CMIP5 (Coupled Model Intercomparison Project Phase 5) experiments. The resulting global annual mean temperature time series exhibit high Pearson correlation coefficients (≥0.9941) and low root mean squared errors (≤0.0547 °C) as compared with the original data. These techniques also provide advantages relative to state-of-the-art kriging interpolation and principal component analysis-based infilling. When applied to HadCRUT4, our method restores a missing spatial pattern of the documented El Nino from July 1877. With respect to the global mean temperature time series, a HadCRUT4 reconstruction by our method points to a cooler nineteenth century, a less apparent hiatus in the twenty-first century, an even warmer 2016 being the warmest year on record and a stronger global trend between 1850 and 2018 relative to previous estimates. We propose image inpainting as an approach to reconstruct missing climate information and thereby reduce uncertainties and biases in climate records. An artificial intelligence-based method may infill gaps in historical temperature data more effectively than conventional techniques. Application of this method reveals a stronger global warming trend between 1850 and 2018 than estimated previously.

69 citations

Journal ArticleDOI
TL;DR: In this article, an improved initialization was proposed for the Mittelfristige Klimaprognosen (MiKlip) project based on the Max-Planck-Institute Earth System Model and furthermore the effect of increased ocean and atmosphere model resolutions.
Abstract: [1] We introduce an improved initialization to the decadal predictions performed for the Mittelfristige Klimaprognosen (MiKlip) project based on the Max-Planck-Institute Earth System Model and furthermore test the effect of increased ocean and atmosphere model resolutions. The new initialization includes both a more sophisticated oceanic initialization and additionally an atmospheric initialization. We compare the performance of retrospective decadal forecasts over the past 50 years with that of the previous system. The new oceanic initialization considerably improves the performance in terms of surface air temperature over the tropical oceans on the 2–5 years time scale, which also helps to improve the predictive skill of global mean surface air temperature on this time scale. The higher model resolution improves the predictive skill of surface air temperature over the tropical Pacific even further. Through the newly introduced atmospheric initialization, the quasi-biennial oscillation exhibits predictive skill of up to 4 years when a sufficiently high vertical atmospheric resolution is used.

66 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the forecast skill of the fully coupled MPI-ESM initialized using only surface wind stress applied to the ocean component of the model (Modini: Model initialization by partially coupled spin-up).
Abstract: We use surface air temperature to evaluate the decadal forecast skill of the fully coupled Max Planck Institut Earth System Model (MPI-ESM) initialized using only surface wind stress applied to the ocean component of the model (Modini: Model initialization by partially coupled spin-up). Our analysis shows that the greenhouse gas forcing alone results in a significant forecast skill on the 2–5 and 6–9 year range even for uninitialized hindcasts. For the first forecast year, the forecast skill of Modini is generally comparable with previous initialization procedures applied to MPI-ESM. But only Modini is able to generate a significant skill (correlation) in the tropical Pacific for a 2–5 year (and to a lesser extent for a 6–9 year) hindcast. Modini is also better able to capture the observed hiatus in global warming in hindcast mode than the other methods. Finally, we present forecasts for 2015 and the average of years 2016–2019 and 2020–2024, predicting an end to the hiatus.

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales as mentioned in this paper, which contributes to real-time policy analysis and development as national and international policies and agreements are discussed.
Abstract: ▶ Addresses a wide range of timely environment, economic and energy topics ▶ A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales ▶ Contributes to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated ▶ 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again

2,587 citations

01 Dec 2012
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

948 citations

Journal ArticleDOI
TL;DR: The Community Earth System Model Version 2 (CESM2) as discussed by the authors is the most recent version of the Coupled Model Intercomparison Project (CMEI) coupled model.
Abstract: An overview of the Community Earth System Model Version 2 (CESM2) is provided, including a discussion of the challenges encountered during its development and how they were addressed. In addition, an evaluation of a pair of CESM2 long preindustrial control and historical ensemble simulations is presented. These simulations were performed using the nominal 1° horizontal resolution configuration of the coupled model with both the “low-top” (40 km, with limited chemistry) and “high-top” (130 km, with comprehensive chemistry) versions of the atmospheric component. CESM2 contains many substantial science and infrastructure improvements and new capabilities since its previous major release, CESM1, resulting in improved historical simulations in comparison to CESM1 and available observations. These include major reductions in low-latitude precipitation and shortwave cloud forcing biases; better representation of the Madden-Julian Oscillation; better El Nino-Southern Oscillation-related teleconnections; and a global land carbon accumulation trend that agrees well with observationally based estimates. Most tropospheric and surface features of the low- and high-top simulations are very similar to each other, so these improvements are present in both configurations. CESM2 has an equilibrium climate sensitivity of 5.1–5.3 °C, larger than in CESM1, primarily due to a combination of relatively small changes to cloud microphysics and boundary layer parameters. In contrast, CESM2's transient climate response of 1.9–2.0 °C is comparable to that of CESM1. The model outputs from these and many other simulations are available to the research community, and they represent CESM2's contributions to the Coupled Model Intercomparison Project Phase 6.

884 citations

01 Dec 2012
TL;DR: In this paper, the magnitude and evolution of parameters that characterize feedbacks in the coupled carbon-climate system are compared across nine Earth system models (ESMs), based on results from biogeochemically, radiatively, and fully coupled simulations in which CO2 increases at a rate of 1% yr−1.
Abstract: The magnitude and evolution of parameters that characterize feedbacks in the coupled carbon–climate system are compared across nine Earth system models (ESMs). The analysis is based on results from biogeochemically, radiatively, and fully coupled simulations in which CO2 increases at a rate of 1% yr−1. These simulations are part of phase 5 of the Coupled Model Intercomparison Project (CMIP5). The CO2 fluxes between the atmosphere and underlying land and ocean respond to changes in atmospheric CO2 concentration and to changes in temperature and other climate variables. The carbon–concentration and carbon–climate feedback parameters characterize the response of the CO2 flux between the atmosphere and the underlying surface to these changes. Feedback parameters are calculated using two different approaches. The two approaches are equivalent and either may be used to calculate the contribution of the feedback terms to diagnosed cumulative emissions. The contribution of carbon–concentration feedback to...

454 citations

Journal ArticleDOI
TL;DR: The authors discusses newly developed tools that facilitate a more rapid and comprehensive evaluation of model simulations with observations, process-based emergent constraints that are a promising way to focus evaluation on the observations most relevant to climate projections, and advanced methods for model weighting.
Abstract: Earth system models are complex and represent a large number of processes, resulting in a persistent spread across climate projections for a given future scenario. Owing to different model performances against observations and the lack of independence among models, there is now evidence that giving equal weight to each available model projection is suboptimal. This Perspective discusses newly developed tools that facilitate a more rapid and comprehensive evaluation of model simulations with observations, process-based emergent constraints that are a promising way to focus evaluation on the observations most relevant to climate projections, and advanced methods for model weighting. These approaches are needed to distil the most credible information on regional climate changes, impacts, and risks for stakeholders and policy-makers.

397 citations