scispace - formally typeset
Search or ask a question
Author

Christopher L. Mendias

Bio: Christopher L. Mendias is an academic researcher from Hospital for Special Surgery. The author has contributed to research in topics: Skeletal muscle & Tendon. The author has an hindex of 35, co-authored 109 publications receiving 3541 citations. Previous affiliations of Christopher L. Mendias include University of Arizona & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis.
Abstract: A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis.

340 citations

Journal ArticleDOI
TL;DR: This review discusses aging-related changes to skeletal muscle structure and function; the regulation of protein synthesis and protein degradation by IGF-1, TGF-β, and myostatin; and the potential for modulating atrogin-1 and MuRF-1 expression to treat or prevent sarcopenia.
Abstract: Sarcopenia is one of the leading causes of disability in the elderly. Despite the growing prevalence of sarcopenia, the molecular mechanisms that control aging-related changes in muscle mass are not fully understood. The ubiquitin proteasome system is one of the major pathways that regulate muscle protein degradation, and this system plays a central role in controlling muscle size. Atrogin-1 and MuRF-1 are two E3 ubiquitin ligases that are important regulators of ubiquitin-mediated protein degradation in skeletal muscle. In this review, we will discuss: (i) aging-related changes to skeletal muscle structure and function; (ii) the regulation of protein synthesis and protein degradation by IGF-1, TGF-β, and myostatin, with emphasis on the control of atrogin-1 and MuRF-1 expression; and (iii) the potential for modulating atrogin-1 and MuRF-1 expression to treat or prevent sarcopenia.

249 citations

Journal ArticleDOI
TL;DR: The purpose of this article was to summarize the known musculoskeletal pathologies in patients with SARS or COVID-19 and to combine this with computational modeling and biochemical signaling studies to predict musculOSkeletal cellular targets and long-term consequences of the SARS-CoV-2 infection.
Abstract: Coronavirus disease 2019 (COVID-19) is an emerging pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the majority of patients who become infected with SARS-CoV-2 are asymptomatic or have mild symptoms, some patients develop severe symptoms that can permanently detract from their quality of life. SARS-CoV-2 is closely related to SARS-CoV-1, which causes severe acute respiratory syndrome (SARS). Both viruses infect the respiratory system, and there are direct and indirect effects of this infection on multiple organ systems, including the musculoskeletal system. Epidemiological data from the SARS pandemic of 2002 to 2004 identified myalgias, muscle dysfunction, osteoporosis, and osteonecrosis as common sequelae in patients with moderate and severe forms of this disease. Early studies have indicated that there is also considerable musculoskeletal dysfunction in some patients with COVID-19, although long-term follow-up studies have not yet been conducted. The purpose of this article was to summarize the known musculoskeletal pathologies in patients with SARS or COVID-19 and to combine this with computational modeling and biochemical signaling studies to predict musculoskeletal cellular targets and long-term consequences of the SARS-CoV-2 infection.

244 citations

Journal ArticleDOI
TL;DR: It is concluded that, in addition to the regulation of muscle mass and force, myostatin regulates the structure and function of tendon tissues.
Abstract: Tendons play a significant role in the modulation of forces transmitted between bones and skeletal muscles and consequently protect muscle fibers from contraction-induced, or high-strain, injuries. Myostatin (GDF-8) is a negative regulator of muscle mass. Inhibition of myostatin not only increases the mass and maximum isometric force of muscles, but also increases the susceptibility of muscle fibers to contraction-induced injury. We hypothesized that myostatin would regulate the morphology and mechanical properties of tendons. The expression of myostatin and the myostatin receptors ACVR2B and ACVRB was detectable in tendons. Surprisingly, compared with wild type (MSTN+/+) mice, the tendons of myostatin-null mice (MSTN−/−) were smaller and had a decrease in fibroblast density and a decrease in the expression of type I collagen. Tendons of MSTN−/− mice also had a decrease in the expression of two genes that promote tendon fibroblast proliferation: scleraxis and tenomodulin. Treatment of tendon fibroblasts with myostatin activated the p38 MAPK and Smad2/3 signaling cascades, increased cell proliferation, and increased the expression of type I collagen, scleraxis, and tenomodulin. Compared with the tendons of MSTN+/+ mice, the mechanical properties of tibialis anterior tendons from MSTN−/− mice had a greater peak stress, a lower peak strain, and increased stiffness. We conclude that, in addition to the regulation of muscle mass and force, myostatin regulates the structure and function of tendon tissues.

174 citations

Journal ArticleDOI
TL;DR: In this paper, myostatin-null mice (MSTN−/−) were smaller and had a decrease in fibroblast density and decreased expression of type I collagen, scleraxis and tenomodulin.
Abstract: Tendons play a significant role in the modulation of forces transmitted between bones and skeletal muscles and consequently protect muscle fibers from contraction-induced, or high-strain, injuries. Myostatin (GDF-8) is a negative regulator of muscle mass. Inhibition of myostatin not only increases the mass and maximum isometric force of muscles, but also increases the susceptibility of muscle fibers to contraction-induced injury. We hypothesized that myostatin would regulate the morphology and mechanical properties of tendons. The expression of myostatin and the myostatin receptors ACVR2B and ACVRB was detectable in tendons. Surprisingly, compared with wild type (MSTN+/+) mice, the tendons of myostatin-null mice (MSTN−/−) were smaller and had a decrease in fibroblast density and a decrease in the expression of type I collagen. Tendons of MSTN−/− mice also had a decrease in the expression of two genes that promote tendon fibroblast proliferation: scleraxis and tenomodulin. Treatment of tendon fibroblasts with myostatin activated the p38 MAPK and Smad2/3 signaling cascades, increased cell proliferation, and increased the expression of type I collagen, scleraxis, and tenomodulin. Compared with the tendons of MSTN+/+ mice, the mechanical properties of tibialis anterior tendons from MSTN−/− mice had a greater peak stress, a lower peak strain, and increased stiffness. We conclude that, in addition to the regulation of muscle mass and force, myostatin regulates the structure and function of tendon tissues.

171 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

19 Nov 2012

1,653 citations

Journal ArticleDOI
TL;DR: Evidence that indicates that the response of myeloid cells to muscle injury promotes muscle regeneration and growth is evaluated, showing that transitions in macrophage phenotype are an essential component of muscle regeneration in vivo following acute or chronic muscle damage.
Abstract: Recent discoveries reveal complex interactions between skeletal muscle and the immune system that regulate muscle regeneration. In this review, we evaluate evidence that indicates that the response of myeloid cells to muscle injury promotes muscle regeneration and growth. Acute perturbations of muscle activate a sequence of interactions between muscle and inflammatory cells. The initial inflammatory response is a characteristic Th1 inflammatory response, first dominated by neutrophils and subsequently by CD68(+) M1 macrophages. M1 macrophages can propagate the Th1 response by releasing proinflammatory cytokines and cause further tissue damage through the release of nitric oxide. Myeloid cells in the early Th1 response stimulate the proliferative phase of myogenesis through mechanisms mediated by TNF-alpha and IL-6; experimental prolongation of their presence is associated with delayed transition to the early differentiation stage of myogenesis. Subsequent invasion by CD163(+)/CD206(+) M2 macrophages attenuates M1 populations through the release of anti-inflammatory cytokines, including IL-10. M2 macrophages play a major role in promoting growth and regeneration; their absence greatly slows muscle growth following injury or modified use and inhibits muscle differentiation and regeneration. Chronic muscle injury leads to profiles of macrophage invasion and function that differ from acute injuries. For example, mdx muscular dystrophy yields invasion of muscle by M1 macrophages, but their early invasion is accompanied by a subpopulation of M2a macrophages. M2a macrophages are IL-4 receptor(+)/CD206(+) cells that reduce cytotoxicity of M1 macrophages. Subsequent invasion of dystrophic muscle by M2c macrophages is associated with progression of the regenerative phase in pathophysiology. Together, these findings show that transitions in macrophage phenotype are an essential component of muscle regeneration in vivo following acute or chronic muscle damage.

940 citations

01 Jan 2000
TL;DR: In this paper, it was shown that myostatin up-regulated p21Waf1, Cip1, and decreased the levels and activity of Cdk2 protein in myoblasts.
Abstract: Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, has been shown to be a negative regulator of myogenesis. Here we show that myostatin functions by controlling the proliferation of muscle precursor cells. When C2C12 myoblasts were incubated with myostatin, proliferation of myoblasts decreased with increasing levels of myostatin. Fluorescence-activated cell sorting analysis revealed that myostatin prevented the progression of myoblasts from the G1- to S-phase of the cell cycle. Western analysis indicated that myostatin specifically up-regulated p21Waf1, Cip1, a cyclin-dependent kinase inhibitor, and decreased the levels and activity of Cdk2 protein in myoblasts. Furthermore, we also observed that in myoblasts treated with myostatin protein, Rb was predominately present in the hypophosphorylated form. These results suggests that, in response to myostatin signaling, there is an increase in p21 expression and a decrease in Cdk2 protein and activity thus resulting in an accumulation of hypophosphorylated Rb protein. This, in turn, leads to the arrest of myoblasts in G1-phase of cell cycle. Thus, we propose that the generalized muscular hyperplasia phenotype observed in animals that lack functional myostatin could be as a result of deregulated myoblast proliferation.

875 citations

Journal ArticleDOI
17 Jun 2016-Science
TL;DR: It is demonstrated the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence and it is demonstrated that NR delays senescences of neural SCs and melanocyteSCs and increases mouse life span.
Abstract: Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals.

833 citations