scispace - formally typeset
Search or ask a question
Author

Christopher M. Bishop

Other affiliations: Aston University, University of Edinburgh, University of Oxford  ...read more
Bio: Christopher M. Bishop is an academic researcher from Microsoft. The author has contributed to research in topics: Artificial neural network & Bayesian probability. The author has an hindex of 60, co-authored 182 publications receiving 73383 citations. Previous affiliations of Christopher M. Bishop include Aston University & University of Edinburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that a modification to the error functional allows smoothing to be introduced explicitly without significantly affecting the speed of training.
Abstract: An important feature of radial basis function neural networks is the existence of a fast, linear learning algorithm in a network capable of representing complex nonlinear mappings. Satisfactory generalization in these networks requires that the network mapping be sufficiently smooth. We show that a modification to the error functional allows smoothing to be introduced explicitly without significantly affecting the speed of training. A simple example is used to demonstrate the resulting improvement in the generalization properties of the network.

325 citations

Proceedings Article
01 Dec 1997
TL;DR: This paper shows that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods and gives a posterior noise variance that well-approximates the true variance.
Abstract: Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.

324 citations

Proceedings Article
Christopher M. Bishop1
01 Dec 1998
TL;DR: This paper uses probabilistic reformulation as the basis for a Bayesian treatment of PCA to show that effective dimensionality of the latent space (equivalent to the number of retained principal components) can be determined automatically as part of the Bayesian inference procedure.
Abstract: The technique of principal component analysis (PCA) has recently been expressed as the maximum likelihood solution for a generative latent variable model. In this paper we use this probabilistic reformulation as the basis for a Bayesian treatment of PCA. Our key result is that effective dimensionality of the latent space (equivalent to the number of retained principal components) can be determined automatically as part of the Bayesian inference procedure. An important application of this framework is to mixtures of probabilistic PCA models, in which each component can determine its own effective complexity.

319 citations

Proceedings ArticleDOI
Christopher M. Bishop1
01 Jan 1999
TL;DR: This paper develops an alternative, variational formulation of Bayesian PCA, based on a factorial representation of the posterior distribution, which maximizes a rigorous lower bound on the marginal log probability of the observed data.
Abstract: One of the central issues in the use of principal component analysis (PCA) for data modelling is that of choosing the appropriate number of retained components. This problem was recently addressed through the formulation of a Bayesian treatment of PCA in terms of a probabilistic latent variable model. A central feature of this approach is that the effective dimensionality of the latent space is determined automatically as part of the Bayesian inference procedure. In common with most non-trivial Bayesian models, however, the required marginalizations are analytically intractable, and so an approximation scheme based on a local Gaussian representation of the posterior distribution was employed. In this paper we develop an alternative, variational formulation of Bayesian PCA, based on a factorial representation of the posterior distribution. This approach is computationally efficient, and unlike other approximation schemes, it maximizes a rigorous lower bound on the marginal log probability of the observed data.

291 citations

Journal ArticleDOI
01 Mar 2005
TL;DR: A Bayesian approach to mixture modelling based on Student-t distributions, which are heavier tailed than Gaussians and hence more robust, is developed, which includes Gaussian mixtures as a special case.
Abstract: Bayesian approaches to density estimation and clustering using mixture distributions allow the automatic determination of the number of components in the mixture. Previous treatments have focussed on mixtures having Gaussian components, but these are well known to be sensitive to outliers, which can lead to excessive sensitivity to small numbers of data points and consequent over-estimates of the number of components. In this paper we develop a Bayesian approach to mixture modelling based on Student-t distributions, which are heavier tailed than Gaussians and hence more robust. By expressing the Student-t distribution as a marginalization over additional latent variables we are able to derive a tractable variational inference algorithm for this model, which includes Gaussian mixtures as a special case. Results on a variety of real data sets demonstrate the improved robustness of our approach.

269 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

28,225 citations

Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations