scispace - formally typeset
Search or ask a question
Author

Christopher Meek

Bio: Christopher Meek is an academic researcher from Microsoft. The author has contributed to research in topics: Bayesian network & Graphical model. The author has an hindex of 49, co-authored 118 publications receiving 9524 citations. Previous affiliations of Christopher Meek include University of California, Riverside & Carnegie Mellon University.


Papers
More filters
Proceedings ArticleDOI
21 Aug 2005
TL;DR: This paper introduces the adversarial classifier reverse engineering (ACRE) learning problem, the task of learning sufficient information about a classifier to construct adversarial attacks, and presents efficient algorithms for reverse engineering linear classifiers with either continuous or Boolean features.
Abstract: Many classification tasks, such as spam filtering, intrusion detection, and terrorism detection, are complicated by an adversary who wishes to avoid detection. Previous work on adversarial classification has made the unrealistic assumption that the attacker has perfect knowledge of the classifier [2]. In this paper, we introduce the adversarial classifier reverse engineering (ACRE) learning problem, the task of learning sufficient information about a classifier to construct adversarial attacks. We present efficient algorithms for reverse engineering linear classifiers with either continuous or Boolean features and demonstrate their effectiveness using real data from the domain of spam filtering.

815 citations

Proceedings Article
18 Aug 1995
TL;DR: This paper presents correct algorithms for answering the following two questions; Does there exist a causal explanation consistent with a set of background knowledge which explains all of the observed independence facts in a sample?
Abstract: This paper presents correct algorithms for answering the following two questions; (i) Does there exist a causal explanation consistent with a set of background knowledge which explains all of the observed independence facts in a sample? (ii) Given that there is such a causal explanation what are the causal relationships common to every such causal explanation?

462 citations

Proceedings ArticleDOI
01 Jun 2014
TL;DR: A semantic parsing framework based on semantic similarity for open domain question answering (QA) that achieves higher precision across different recall points compared to the previous approach, and can improve F1 by 7 points.
Abstract: We develop a semantic parsing framework based on semantic similarity for open domain question answering (QA). We focus on single-relation questions and decompose each question into an entity mention and a relation pattern. Using convolutional neural network models, we measure the similarity of entity mentions with entities in the knowledge base (KB) and the similarity of relation patterns and relations in the KB. We score relational triples in the KB using these measures and select the top scoring relational triple to answer the question. When evaluated on an open-domain QA task, our method achieves higher precision across different recall points compared to the previous approach, and can improve F1 by 7 points.

424 citations

Proceedings ArticleDOI
Wen-tau Yih1, Matthew Richardson1, Christopher Meek1, Ming-Wei Chang1, Jina Suh1 
07 Aug 2016
TL;DR: The value of collecting semantic parse labels for knowledge base question answering is demonstrated and the largest semantic-parse labeled dataset to date is created and shared in order to advance research in question answering.
Abstract: We demonstrate the value of collecting semantic parse labels for knowledge base question answering. In particular, (1) unlike previous studies on small-scale datasets, we show that learning from labeled semantic parses significantly improves overall performance, resulting in absolute 5 point gain compared to learning from answers, (2) we show that with an appropriate user interface, one can obtain semantic parses with high accuracy and at a cost comparable or lower than obtaining just answers, and (3) we have created and shared the largest semantic-parse labeled dataset to date in order to advance research in question answering.

385 citations

Posted Content
TL;DR: In this paper, the authors present correct algorithms for answering the following two questions; (i) Does there exist a causal explanation consistent with a set of background knowledge which explains all of the observed independence facts in a sample?
Abstract: This paper presents correct algorithms for answering the following two questions; (i) Does there exist a causal explanation consistent with a set of background knowledge which explains all of the observed independence facts in a sample? (ii) Given that there is such a causal explanation what are the causal relationships common to every such causal explanation?

380 citations


Cited by
More filters
Proceedings ArticleDOI
Yoon Kim1
25 Aug 2014
TL;DR: The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification, and are proposed to allow for the use of both task-specific and static vectors.
Abstract: We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks. We show that a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks. Learning task-specific vectors through fine-tuning offers further gains in performance. We additionally propose a simple modification to the architecture to allow for the use of both task-specific and static vectors. The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification.

9,776 citations

Journal ArticleDOI
TL;DR: This survey tries to provide a structured and comprehensive overview of the research on anomaly detection by grouping existing techniques into different categories based on the underlying approach adopted by each technique.
Abstract: Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.

9,627 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Posted Content
Yoon Kim1
TL;DR: In this article, CNNs are trained on top of pre-trained word vectors for sentence-level classification tasks and a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks.
Abstract: We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks. We show that a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks. Learning task-specific vectors through fine-tuning offers further gains in performance. We additionally propose a simple modification to the architecture to allow for the use of both task-specific and static vectors. The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification.

7,826 citations

Journal ArticleDOI
01 Jul 1997
TL;DR: Multi-task Learning (MTL) as mentioned in this paper is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias.
Abstract: Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new evidence that MTL in backprop nets discovers task relatedness without the need of supervisory signals, and presents new results for MTL with k-nearest neighbor and kernel regression. In this paper we demonstrate multitask learning in three domains. We explain how multitask learning works, and show that there are many opportunities for multitask learning in real domains. We present an algorithm and results for multitask learning with case-based methods like k-nearest neighbor and kernel regression, and sketch an algorithm for multitask learning in decision trees. Because multitask learning works, can be applied to many different kinds of domains, and can be used with different learning algorithms, we conjecture there will be many opportunities for its use on real-world problems.

5,181 citations