scispace - formally typeset
Search or ask a question
Author

Christopher R. Clarkson

Bio: Christopher R. Clarkson is an academic researcher from University of Calgary. The author has contributed to research in topics: Permeability (earth sciences) & Tight gas. The author has an hindex of 48, co-authored 265 publications receiving 10164 citations. Previous affiliations of Christopher R. Clarkson include University of British Columbia & Burlington Resources.


Papers
More filters
Journal ArticleDOI
01 Jan 2013-Fuel
TL;DR: In this paper, small-angle and ultra-small-angle neutron scattering (SANS and USANS), low-pressure adsorption (N2 and CO2), and high-pressure mercury intrusion measurements were performed on a suite of North American shale reservoir samples providing the first ever comparison of all these techniques for characterizing the complex pore structure of shales.

1,335 citations

Journal ArticleDOI
01 Sep 1999-Fuel
TL;DR: In this paper, the effect of coal composition upon pore structure and adsorption characteristics of four bituminous coals of the Cretaceous Gates Formation coal is investigated.

523 citations

Journal ArticleDOI
TL;DR: The influence of coal composition and rank on coalbed methane reservoir capacity, gas content and gas saturation have been investigated for a series of Australian, Canadian and United States coals.

512 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of coal moisture content and composition on carbon dioxide and carbon dioxide mixed gas adsorption characteristics is investigated, and coal moisture decreases carbon dioxide selectivity.

400 citations

Journal ArticleDOI
01 Sep 1999-Fuel
TL;DR: In this article, the effect of coal composition, pore structure, and gas pressure upon methane and carbon dioxide gas transport in Cretaceous Gates Formation coal is investigated, and a new numerical model for matrix gas diffusion/adsorption is developed and applied to methane and CO 2 volumetric adsorption rate data.

395 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The effect of shale composition and fabric upon pore structure and CH 4 sorption is investigated for potential shale gas reservoirs in the Western Canadian Sedimentary Basin (WCSB) as mentioned in this paper.

1,749 citations

11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations

Journal ArticleDOI
01 Jan 2013-Fuel
TL;DR: In this paper, small-angle and ultra-small-angle neutron scattering (SANS and USANS), low-pressure adsorption (N2 and CO2), and high-pressure mercury intrusion measurements were performed on a suite of North American shale reservoir samples providing the first ever comparison of all these techniques for characterizing the complex pore structure of shales.

1,335 citations

Journal ArticleDOI
TL;DR: In this article, the nanometer-scaled pore systems of gas shale reservoirs were investigated from the Barnett, Marcellus, Woodford, and Haynesville gas shales in the United States and the Doig Formation of northeastern British Columbia, Canada.
Abstract: The nanometer-scaled pore systems of gas shale reservoirs were investigated from the Barnett, Marcellus, Woodford, and Haynesville gas shales in the United States and the Doig Formation of northeastern British Columbia, Canada. The purpose of this article is to provide awareness of the nature and variability in pore structures within gas shales and not to provide a representative evaluation on the previously mentioned North American reservoirs. To understand the pore system of these rocks, the total porosity, pore-size distribution, surface area, organic geochemistry, mineralogy, and image analyses by electron microscopy were performed. Total porosity from helium pycnometry ranges between 2.5 and 6.6%. Total organic carbon content ranges between 0.7 and 6.8 wt. %, and vitrinite reflectance measured between 1.45 and 2.37%. The gas shales in the United States are clay and quartz rich, with the Doig Formation samples being quartz and carbonate rich and clay poor. Higher porosity samples have higher values because of a greater abundance of mesopores compared with lower porosity samples. With decreasing total porosity, micropore volumes relatively increase whereas the sum of mesopores and macropore volumes decrease. Focused ion beam milling, field emission scanning electron microscopy, and transmission electron microscopy provide high-resolution (∼5 nm) images of pore distribution and geometries. Image analysis provides a visual appreciation of pore systems in gas shale reservoirs but is not a statistically valid method to evaluate gas shale reservoirs. Macropores and mesopores are observed as either intergranular porosity or are confined to kerogen-rich aggregates and show no preferred orientation or align parallel with the laminae of the shale. Networks of mesopores are observed to connect with the larger macropores within the kerogen-rich aggregates.

1,251 citations