scispace - formally typeset
Search or ask a question
Author

Christopher Talbot

Other affiliations: Imperial College London
Bio: Christopher Talbot is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Presenilin & Apolipoprotein E. The author has an hindex of 11, co-authored 12 publications receiving 5731 citations. Previous affiliations of Christopher Talbot include Imperial College London.
Topics: Presenilin, Apolipoprotein E, Gene, Allele, Genotype

Papers
More filters
Journal ArticleDOI
21 Feb 1991-Nature
TL;DR: A locus segregating with familial Alzheimer's disease (AD) has been mapped to chromosome 21, close to the amyloid precursor protein (APP) gene as discussed by the authors, which suggests that some cases of AD could be caused by mutations in the APP gene.
Abstract: A locus segregating with familial Alzheimer's disease (AD) has been mapped to chromosome 21, close to the amyloid precursor protein (APP) gene. Recombinants between the APP gene and the AD locus have been reported which seemed to exclude it as the site of the mutation causing familial AD. But recent genetic analysis of a large number of AD families has demonstrated that the disease is heterogeneous. Families with late-onset AD do not show linkage to chromosome 21 markers. Some families with early-onset AD show linkage to chromosome 21 markers, but some do not. This has led to the suggestion that there is non-allelic genetic heterogeneity even within early onset familial AD. To avoid the problems that heterogeneity poses for genetic analysis, we have examined the cosegregation of AD and markers along the long arm of chromosome 21 in a single family with AD confirmed by autopsy. Here we demonstrate that in this kindred, which shows linkage to chromosome 21 markers, there is a point mutation in the APP gene. This mutation causes an amino-acid substitution (Val----Ile) close to the carboxy terminus of the beta-amyloid peptide. Screening other cases of familial AD revealed a second unrelated family in which this variant occurs. This suggests that some cases of AD could be caused by mutations in the APP gene.

4,416 citations

Journal ArticleDOI
TL;DR: This work has localized the PS-1 gene to a 75 kb region and present the structure of this gene, evidence for alternative splicing and describe six novel mutations in early onset FAD pedigrees all of which alter residues conserved in the STM26 (Presenilin 2: PS-2) gene.
Abstract: Genetic linkage studies place a gene causing early onset familial Alzheimer's disease (FAD) on chromosome 14q24.3 (refs 1–4). Five mutations within the S182 (Presenilin 1: PS–1) gene, which maps to this region, have recently been reported in several early onset FAD kindreds5. We have localized the PS-1 gene to a 75 kb region and present the structure of this gene, evidence for alternative splicing and describe six novel mutations in early onset FAD pedigrees all of which alter residues conserved in the STM26 (Presenilin 2: PS-2) gene.

474 citations

Journal ArticleDOI
TL;DR: In the white series of cases, PS-1 accounted for about half as much of the risk for late-onset Alzheimer's disease as did ApoE4, and the smaller African-American series showed similar distribution of PS- 1 genotype between cases and controls.

242 citations

Journal ArticleDOI
TL;DR: A Midwestern American pedigree spanning four generations in which 15 individuals were affected by early‐onset dementia with long disease duration, with an autosomal dominant inheritance pattern, and with α‐rich neurofibrillary pathology found in the brain post mortem is presented.
Abstract: Several familial dementing conditions with atypical features have been characterized, but only rarely is the neuropathology dominated solely by neurofibrillary lesions. We present a Midwestern American pedigree spanning four generations in which 15 individuals were affected by early-onset dementia with long disease duration, with an autosomal dominant inheritance pattern, and with tau-rich neurofibrillary pathology found in the brain post mortem. The average age at presentation was 55 years with gradual onset and progression of memory loss and personality change. After 30 years' disease duration, the proband's neuropathologic examination demonstrated abundant intraneuronal neurofibrillary tangles (NFTs) involving the hippocampus, pallidum, subthalamic nucleus, substantia nigra, pons, and medulla. Only sparse neocortical tangles were present and amyloid plaques were absent. The tangles were recognized by antibodies specific for phosphorylation-independent (Tau-2, T46, 133, and Alz-50) and phosphorylation-dependent epitopes (AT8, T3P, PHF-1, 12E8, AT6, AT18, AT30) in tau proteins. Electron microscopy of NFTs in the dentate gyrus and midbrain demonstrated paired helical filaments. Although the clinical phenotype resembles Alzheimer's disease, and the neuropathologic phenotype resembles progressive supranuclear palsy, an alternative consideration is that this familial disorder may be a new or distinct disease entity.

181 citations


Cited by
More filters
Journal ArticleDOI
19 Jul 2002-Science
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.

12,652 citations

Journal ArticleDOI
13 Aug 1993-Science
TL;DR: The APOE-epsilon 4 allele is associated with the common late onset familial and sporadic forms of Alzheimer9s disease (AD) in 42 families with late onset AD.
Abstract: The apolipoprotein E type 4 allele (APOE-epsilon 4) is genetically associated with the common late onset familial and sporadic forms of Alzheimer9s disease (AD). Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE-epsilon 4 alleles in 42 families with late onset AD. Thus APOE-epsilon 4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE-epsilon 4 was virtually sufficient to cause AD by age 80.

8,669 citations

Journal ArticleDOI
10 Apr 1992-Science
TL;DR: An extensive catalog of genes that act in a migrating cell is provided, unique molecular functions involved in nematode cell migration are identified, and similar functions in humans are suggested.
Abstract: In both metazoan development and metastatic cancer, migrating cells must carry out a detailed, complex program of sensing cues, binding substrates, and moving their cytoskeletons. The linker cell in Caenorhabditis elegans males undergoes a stereotyped migration that guides gonad organogenesis, occurs with precise timing, and requires the nuclear hormone receptor NHR-67. To better understand how this occurs, we performed RNA-seq of individually staged and dissected linker cells, comparing transcriptomes from linker cells of third-stage (L3) larvae, fourth-stage (L4) larvae, and nhr-67-RNAi–treated L4 larvae. We observed expression of 8,000–10,000 genes in the linker cell, 22–25% of which were up- or down-regulated 20-fold during development by NHR-67. Of genes that we tested by RNAi, 22% (45 of 204) were required for normal shape and migration, suggesting that many NHR-67–dependent, linker cell-enriched genes play roles in this migration. One unexpected class of genes up-regulated by NHR-67 was tandem pore potassium channels, which are required for normal linker-cell migration. We also found phenotypes for genes with human orthologs but no previously described migratory function. Our results provide an extensive catalog of genes that act in a migrating cell, identify unique molecular functions involved in nematode cell migration, and suggest similar functions in humans.

6,144 citations

Journal ArticleDOI
TL;DR: Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract: Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

5,890 citations

Journal ArticleDOI
TL;DR: Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.
Abstract: The distinct protein aggregates that are found in Alzheimer's, Parkinson's, Huntington's and prion diseases seem to cause these disorders. Small intermediates - soluble oligomers - in the aggregation process can confer synaptic dysfunction, whereas large, insoluble deposits might function as reservoirs of the bioactive oligomers. These emerging concepts are exemplified by Alzheimer's disease, in which amyloid beta-protein oligomers adversely affect synaptic structure and plasticity. Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.

4,499 citations