scispace - formally typeset
Search or ask a question
Author

Christopher V.E. Wright

Bio: Christopher V.E. Wright is an academic researcher from Vanderbilt University. The author has contributed to research in topics: Pancreas & PDX1. The author has an hindex of 87, co-authored 219 publications receiving 26919 citations. Previous affiliations of Christopher V.E. Wright include Carnegie Institution for Science & Vanderbilt University Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The pdx-1/beta-galactosidase fusion allele is expressed in pancreatic and duodenal cells in the absence of functional PDX-1, with expression continuing into perinatal stages with similar boundaries and expression levels, and offers additional insight into the role of p dx-1 in the determination and differentiation of the posterior foregut.
Abstract: It has been proposed that the Xenopus homeobox gene, XlHbox8, is involved in endodermal differentiation during pancreatic and duodenal development (Wright, C.V.E., Schnegelsberg, P. and De Robertis, E.M. (1988). Development 105, 787–794). To test this hypothesis directly, gene targeting was used to make two different null mutations in the mouse XlHbox8 homolog, pdx-1. In the first, the second pdx-1 exon, including the homeobox, was replaced by a neomycin resistance cassette. In the second, a lacZ reporter was fused in-frame with the N terminus of PDX-1, replacing most of the homeodomain. Neonatal pdx-1 −/− mice are apancreatic, in confirmation of previous reports (Jonsson, J., Carlsson, L., Edlund, T. and Edlund, H. (1994). Nature 371, 606–609). However, the pancreatic buds do form in homozygous mutants, and the dorsal bud undergoes limited proliferation and outgrowth to form a small, irregularly branched, ductular tree. This outgrowth does not contain insulin or amylase-positive cells, but glucagon-expressing cells are found. The rostral duodenum shows a local absence of the normal columnar epithelial lining, villi, and Brunner's glands, which are replaced by a GLUT2-positive cuboidal epithelium resembling the bile duct lining. Just distal of the abnormal epithelium, the numbers of enteroendocrine cells in the villi are greatly reduced. The PDX-1/beta-galactosidase fusion allele is expressed in pancreatic and duodenal cells in the absence of functional PDX-1, with expression continuing into perinatal stages with similar boundaries and expression levels. These results offer additional insight into the role of pdx-1 in the determination and differentiation of the posterior foregut, particularly regarding the proliferation and differentiation of the pancreatic progenitors.

1,540 citations

Journal ArticleDOI
TL;DR: Ch Chimera analysis indicates that it is the Bmp4 expression in the extraembryonic ectoderm that regulates the formation of allantois and primordial germ cell precursors, and the size of the founding population of PGCs.
Abstract: Before gastrulation, the mouse embryo consists of three distinct cell lineages which were established in the blastocyst during the peri-implantation period, that is, epiblast, extraembryonic endoderm, and trophectoderm. The epiblast, from which the entire fetus will form, as well as the extraembryonic mesoderm and amnion ectoderm, is a cup-shaped epithelium apposed on its open end to the extraembryonic ectoderm, a trophectoderm derivative. Both epiblast and extraembryonic ectoderm are covered by visceral endoderm, which is part of the extraembryonic endoderm lineage (Hogan et al. 1994). The primordial germ cells (PGCs) of the mouse embryo are derived from part of the population of epiblast cells that will give rise mainly to the extraembryonic mesoderm. Precursors of the PGCs are located before gastrulation in the extreme proximal region of the epiblast adjacent to the extraembryonic ectoderm, and have descendants not only in the germ line, but also in extraembryonic structures, that is, the allantois, blood islands, and yolk sac mesoderm, as well as both layers of the amnion. At embryonic day (E) 6.0, these precursors lie scattered in a ring that extends up to three cell diameters from the junction with the extraembryonic ectoderm (Lawson and Hage 1994). Early in gastrulation, they converge toward the primitive streak in the posterior of the embryo and translocate through it. Allocation to the germ cell lineage is thought to occur in ∼45 cells around E7.2, after the precursors have passed through the streak and have come to reside in the extraembryonic mesoderm (Lawson and Hage 1994). This is about the time when the putative PGCs can first be identified morphologically in a cluster posterior to the primitive streak in a position that will later become the base of the allantois (Ginsburg et al. 1990). PGCs stain strongly in a characteristic pattern for alkaline phosphatase (AP) activity (Chiquoine 1954), which by this stage is due to tissue nonspecific AP (Hahnel et al. 1990; MacGregor et al. 1995). The PGCs continue to express AP during their proliferation in the developing hindgut and migration into the genital ridges (for review, see Buehr 1997). Transplantation studies have shown that genetically marked distal epiblast cells from pre- and early-primitive streak-stage embryos, which would normally contribute to neuroectoderm and never to the PGCs, can give rise to PGCs and extraembryonic mesoderm when grafted to the proximal epiblast (Tam and Zhou 1996). These results raise the possibility that PGC precursors are induced by extracellular factors and/or cell interactions present locally at the junction between the extraembryonic ectoderm and epiblast. Candidate genes encoding putative germ cell precursor inducing factors are predicted to be expressed in the mouse embryo before and during gastrulation. One such factor is Bone Morphogenetic Protein 4 (Bmp4), a member of the TGFβ superfamily of intercellular signaling proteins (Hogan 1996; Waldrip et al. 1998). Most mouse embryos homozygous for a null mutation in Bmp4 die around gastrulation (∼E6.5) (Winnier et al. 1995). On some genetic backgrounds, however, a proportion of the mutant embryos survive until the early somite stage and show severe defects, particularly in the extraembryonic mesoderm (Winnier et al. 1995). In this paper, we exploit this late phenotype to show that PGC formation absolutely requires Bmp4 signaling. In addition, the size of the founding population of PGCs is significantly reduced in heterozygous mutant embryos. By using a Bmp4–lacZ reporter allele, we have definitively localized Bmp4 expression before gastrulation in the extraembryonic ectoderm and in mid- to late- primitive streak stage embryos in the extraembryonic mesoderm. Thus, Bmp4 is expressed at the right time and in the right place to play a role both in the quantitative induction of PGC precursors in the proximal epiblast and in their allocation to the germ cell lineage in the extraembryonic mesoderm. Furthermore, by analyzing genetic chimeras, we have clearly established a role for Bmp4 in the induction of PGC precursors and demonstrate for the first time that a secreted signal from the extraembryonic ectoderm is required for the normal development of the epiblast.

1,300 citations

Journal ArticleDOI
TL;DR: Rec recombination-based lineage tracing in vivo is used to show that PTF1a is expressed at these early stages in the progenitors of pancreatic ducts, exocrine and endocrine cells, rather than being an exocrine-specific gene as previously described.
Abstract: Pancreas development begins with the formation of buds at specific sites in the embryonic foregut endoderm. We used recombination-based lineage tracing in vivo to show that Ptf1a (also known as PTF1-p48) is expressed at these early stages in the progenitors of pancreatic ducts, exocrine and endocrine cells, rather than being an exocrine-specific gene as previously described. Moreover, inactivation of Ptf1a switches the character of pancreatic progenitors such that their progeny proliferate in and adopt the normal fates of duodenal epithelium, including its stem-cell compartment. Consistent with the proposal that Ptf1a supports the specification of precursors of all three pancreatic cell types, transgene-based expression of Pdx1, a gene essential to pancreas formation, from Ptf1a cis-regulatory sequences restores pancreas tissue to Pdx1-null mice that otherwise lack mature exocrine and endocrine cells because of an early arrest in organogenesis. These experiments provide evidence that Ptf1a expression is specifically connected to the acquisition of pancreatic fate by undifferentiated foregut endoderm.

995 citations

Journal ArticleDOI
TL;DR: N nanopore direct RNA-seq is demonstrated, a highly parallel, real-time, single-molecule method that circumvents reverse transcription or amplification steps and enables the direct detection of nucleotide analogs in RNA.
Abstract: Direct sequencing of RNA molecules in real time using nanopores allows for the detection of splice variants and hold promises for profiling RNA modifications.

757 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias and the identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes.
Abstract: The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.

8,587 citations

Journal ArticleDOI
TL;DR: Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt.
Abstract: In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.

3,641 citations

Journal ArticleDOI
25 Jul 2008-Cell
TL;DR: The mechanistic basis and clinical relevance of TGFbeta's role in cancer is becoming increasingly clear, paving the way for a better understanding of the complexity and therapeutic potential of this pathway.

3,299 citations

Journal ArticleDOI
TL;DR: This review focuses on the mechanisms regulating the synthesis, secretion, biological actions, and therapeutic relevance of the incretin peptides glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1).

3,103 citations