scispace - formally typeset
Search or ask a question
Author

Christopher V. Hollot

Bio: Christopher V. Hollot is an academic researcher from University of Massachusetts Amherst. The author has contributed to research in topics: Reset (computing) & Linear system. The author has an hindex of 37, co-authored 121 publications receiving 8213 citations.


Papers
More filters
Proceedings ArticleDOI
22 Apr 2001
TL;DR: A previously developed linearized model of TCP and active queue management (AQM) is studied, and the proportional integral (PI) controller is shown to outperform RED significantly.
Abstract: In this paper we study a previously developed linearized model of TCP and active queue management (AQM). We use classical control system techniques to develop controllers well suited for the application. The controllers are shown to have better theoretical properties than the well known RED controller. We present guidelines for designing stable controllers subject to network parameters like load level propagation delay etc. We also present simple implementation techniques which require a minimal change to RED implementations. The performance of the controllers are verified and compared with RED using ns simulations. The second of our designs, the proportional integral (PI) controller is shown to outperform RED significantly.

1,006 citations

Proceedings ArticleDOI
22 Apr 2001
TL;DR: This work uses a previously developed nonlinear dynamic model of TCP to analyze and design active queue management (AQM) control systems using random early detection (RED) and presents guidelines for designing linearly stable systems subject to network parameters like propagation delay and load level.
Abstract: We use a previously developed nonlinear dynamic model of TCP to analyze and design active queue management (AQM) control systems using random early detection (RED). First, we linearize the interconnection of TCP and a bottlenecked queue and discuss its feedback properties in terms of network parameters such as link capacity, load and round-trip time. Using this model, we next design an AQM control system using the RED scheme by relating its free parameters such as the low-pass filter break point and loss probability profile to the network parameters. We present guidelines for designing linearly stable systems subject to network parameters like propagation delay and load level. Robustness to variations in system loads is a prime objective. We present no simulations to support our analysis.

974 citations

Journal ArticleDOI
TL;DR: A recently developed dynamic model of TCP congestion-avoidance mode relates key network parameters such as the number of TCP sessions, link capacity and round-trip time to the underlying feedback control problem and analyzes the present de facto AQM standard: random early detection (RED) and determines that REDs queue-averaging is not beneficial.
Abstract: In active queue management (AQM), core routers signal transmission control protocol (TCP) sources with the objective of managing queue utilization and delay. It is essentially a feedback control problem. Based on a recently developed dynamic model of TCP congestion-avoidance mode, this paper does three things: 1) it relates key network parameters such as the number of TCP sessions, link capacity and round-trip time to the underlying feedback control problem; 2) it analyzes the present de facto AQM standard: random early detection (RED) and determines that REDs queue-averaging is not beneficial; and 3) it recommends alternative AQM schemes which amount to classical proportional and proportional-integral control. We illustrate our results using ns simulations and demonstrate the practical impact of proportional-integral control on managing queue utilization and delay.

858 citations

Journal ArticleDOI
TL;DR: The fundamental idea behind the algorithm presented involves constructing an upper bound for the Lyapunov derivative corresponding to the closed loop system, a quadratic form, which can be found by solving a certain matrix Riccati equation.

825 citations

Journal ArticleDOI
TL;DR: It is shown that the root locations of the entire family can be completely determined by examining only the roots of the polynomials contained in the exposed edges of the polytope.
Abstract: The presence of uncertain parameters in a state space or frequency domain description of a linear, time-invariant system manifests itself as variability in the coefficients of the characteristic polynomial. If the family of all such polynomials is polytopic in coefficient space, we show that the root locations of the entire family can be completely determined by examining only the roots of the polynomials contained in the exposed edges of the polytope. These procedures are computationally tractable, and this criterion improves upon the presently available stability tests for uncertain systems, being less conservative and explicitly determining all root locations. Equally important is the fact that the results are also applicable to discrete-time systems.

794 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
01 Jan 1994
TL;DR: In this paper, the authors present a brief history of LMIs in control theory and discuss some of the standard problems involved in LMIs, such as linear matrix inequalities, linear differential inequalities, and matrix problems with analytic solutions.
Abstract: Preface 1. Introduction Overview A Brief History of LMIs in Control Theory Notes on the Style of the Book Origin of the Book 2. Some Standard Problems Involving LMIs. Linear Matrix Inequalities Some Standard Problems Ellipsoid Algorithm Interior-Point Methods Strict and Nonstrict LMIs Miscellaneous Results on Matrix Inequalities Some LMI Problems with Analytic Solutions 3. Some Matrix Problems. Minimizing Condition Number by Scaling Minimizing Condition Number of a Positive-Definite Matrix Minimizing Norm by Scaling Rescaling a Matrix Positive-Definite Matrix Completion Problems Quadratic Approximation of a Polytopic Norm Ellipsoidal Approximation 4. Linear Differential Inclusions. Differential Inclusions Some Specific LDIs Nonlinear System Analysis via LDIs 5. Analysis of LDIs: State Properties. Quadratic Stability Invariant Ellipsoids 6. Analysis of LDIs: Input/Output Properties. Input-to-State Properties State-to-Output Properties Input-to-Output Properties 7. State-Feedback Synthesis for LDIs. Static State-Feedback Controllers State Properties Input-to-State Properties State-to-Output Properties Input-to-Output Properties Observer-Based Controllers for Nonlinear Systems 8. Lure and Multiplier Methods. Analysis of Lure Systems Integral Quadratic Constraints Multipliers for Systems with Unknown Parameters 9. Systems with Multiplicative Noise. Analysis of Systems with Multiplicative Noise State-Feedback Synthesis 10. Miscellaneous Problems. Optimization over an Affine Family of Linear Systems Analysis of Systems with LTI Perturbations Positive Orthant Stabilizability Linear Systems with Delays Interpolation Problems The Inverse Problem of Optimal Control System Realization Problems Multi-Criterion LQG Nonconvex Multi-Criterion Quadratic Problems Notation List of Acronyms Bibliography Index.

11,085 citations

Book
26 Jun 2003
TL;DR: Preface, Notations 1.Introduction to Time-Delay Systems I.Robust Stability Analysis II.Input-output stability A.LMI and Quadratic Integral Inequalities Bibliography Index
Abstract: Preface, Notations 1.Introduction to Time-Delay Systems I.Frequency-Domain Approach 2.Systems with Commensurate Delays 3.Systems withIncommensurate Delays 4.Robust Stability Analysis II.Time Domain Approach 5.Systems with Single Delay 6.Robust Stability Analysis 7.Systems with Multiple and Distributed Delays III.Input-Output Approach 8.Input-output stability A.Matrix Facts B.LMI and Quadratic Integral Inequalities Bibliography Index

4,200 citations