scispace - formally typeset
Search or ask a question
Author

Christos Gougoussis

Other affiliations: University of Paris
Bio: Christos Gougoussis is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Absorption spectroscopy & XANES. The author has an hindex of 5, co-authored 13 publications receiving 26666 citations. Previous affiliations of Christos Gougoussis include University of Paris.

Papers
More filters
Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

Journal ArticleDOI
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

13,052 citations

Journal ArticleDOI
TL;DR: In this article, a first-principles scheme based on the continued fraction approach and pseudopotentials was developed to calculate K-edge x-ray absorption spectra in solids, allowing such calculations in transition metal and rare-earth compounds with substantially reduced cutoffs with respect to the norm-conserving case.
Abstract: We develop a first-principles scheme based on the continued-fraction approach and ultrasoft pseudopotentials to calculate K-edge x-ray absorption spectra in solids, allowing such calculations in transition-metal and rare-earth compounds with substantially reduced cutoffs with respect to the norm-conserving case. We validate the method by calculating Si and O K edges in !-quartz, Cu K edge in copper and in La2CuO4. For the case of Si and O edges in !-quartz and in copper, we obtain good agreement with experimental data. In the Cu K-edge spectra of La2CuO4, a material considered a real challenge for density-functional theory, we attribute all the near-edge and far-edge peaks to single-particle excitations.

162 citations

Journal ArticleDOI
TL;DR: In this article, the core-hole attraction and correlation effects were combined in a first-principles approach to calculate the K$-edge x-ray absorption spectra in NiO and obtain a striking parameter-free agreement with experimental data.
Abstract: Pre-edge features in x-ray absorption spectroscopy contain key information about the lowest excited states and thus on the most interesting physical properties of the system In transition-metal oxides they are particularly structured but extracting physical parameters by comparison with a calculation is not easy due to several computational challenges By combining core-hole attraction and correlation effects in a first-principles approach, we calculate $\text{Ni}\text{ }K$-edge x-ray absorption spectra in NiO We obtain a striking parameter-free agreement with experimental data and show that dipolar pre-edge features above the correlation gap are due to nonlocal excitations largely unaffected by the core hole We show that in charge transfer insulators, this property can be used to measure the correlation gap and probe the intrinsic position of the upper Hubbard band

80 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that shakeup effects can be included in XAS spectra in a simple way by convoluting the single-particle first-principles calculations including core-hole effects with the 1$s$ photoemission spectra.
Abstract: Near-edge structures in $K$-edge x-ray absorption spectra (XAS) are widely investigated to understand the electronic and local structure in materials. The precise interpretation of these spectra with the help of calculations is hence of prime importance, especially for the study of correlated materials which have a complicated electronic structure per se. The single-particle approach, for example, has generally limited itself to the dominant dipolar cross section. It has long been known, however, that effects beyond this approach should be taken into account, due to both the inadequacy of such calculations when compared to experiment and the presence of shakeup many-body satellites in core-level photoemission spectra of correlated materials. This effect should manifest itself in XANES spectra, and the question is first how to account for it theoretically and second how to verify it experimentally. By using state-of-the-art first-principles electronic structure calculations and 1$s$ photoemission measurements, we demonstrate that shakeup many-body effects are present in $K$-edge XAS dipolar spectra of NiO, CoO, and CuO at all energy scales. We show that shakeup effects can be included in $K$-edge XAS spectra in a simple way by convoluting the single-particle first-principles calculations including core-hole effects with the 1$s$ photoemission spectra. We thus describe all features appearing in the XAS dipolar cross section of NiO and CoO and obtain a dramatic improvement with respect to the single-particle calculation in CuO. These materials being prototype correlated magnetic oxides, our work points to the presence of shakeup effects in $K$-edge XANES of most correlated transition-metal compounds and shows how to account for them, paving the way to a precise understanding of their electronic structure.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

Journal ArticleDOI
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software

3,638 citations

Journal ArticleDOI
26 Apr 2017
TL;DR: In this paper, the authors reported the experimental discovery of intrinsic ferromagnetism in Cr 2 Ge 2 Te 6 atomic layers by scanning magneto-optic Kerr microscopy.
Abstract: We report the experimental discovery of intrinsic ferromagnetism in Cr 2 Ge 2 Te 6 atomic layers by scanning magneto-optic Kerr microscopy. In this 2D van der Waals ferromagnet, unprecedented control of transition temperature is realized via small magnetic fields.

3,215 citations

Journal ArticleDOI
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

2,818 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations