scispace - formally typeset
Search or ask a question
Author

Chuanxian Ding

Other affiliations: Lucideon
Bio: Chuanxian Ding is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Coating & Simulated body fluid. The author has an hindex of 42, co-authored 188 publications receiving 8720 citations. Previous affiliations of Chuanxian Ding include Lucideon.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of surface modification techniques for titanium and titanium alloys can be found in this article, where the authors have shown that the wear resistance, corrosion resistance, and biological properties can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained.
Abstract: Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, in order to improve the biological, chemical, and mechanical properties, surface modification is often performed. This article reviews the various surface modification technologies pertaining to titanium and titanium alloys including mechanical treatment, thermal spraying, sol–gel, chemical and electrochemical treatment, and ion implantation from the perspective of biomedical engineering. Recent work has shown that the wear resistance, corrosion resistance, and biological properties of titanium and titanium alloys can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained. The proper surface treatment expands the use of titanium and titanium alloys in the biomedical fields. Some of the recent applications are also discussed in this paper.

3,019 citations

Journal ArticleDOI
TL;DR: An attempt has been made to enhance the bonding strength of HA coating by forming a composite coating with Ti, and the obtained results revealed that the addition of Ti to HA improved the bonded strength of coating significantly.

334 citations

Journal ArticleDOI
TL;DR: The results indicate that the increase of calcium in the SBF solution is not the critical factor affecting the precipitation of apatite on the surface of the wollastonite coating and the apatites can only form on a negatively charged surface with the functional group (triple bond Si-O(-)).

317 citations

Journal ArticleDOI
22 Nov 2010
TL;DR: The fabrication, characterization, and properties of biomaterials such as ceramics, metals, and polymers with nanostructured surfaces are reviewed.
Abstract: After biomaterials are implanted into the human body, there are inevitable interactions between the biological environment and implant surfaces. Therefore, the surface of biomaterials has become one of the hottest research topics. Nanotechnology is a powerful tool in modern materials science and able to incorporate biomimicry on the nanoscale into materials engineering. Therefore, research on nanotechnology/nanostructured biomaterials has attracted much attention. A nano-functionalized surface has promising biological properties and clinical applications of biomaterials can be improved by producing a nanostructured surface. Many surface modification techniques have been adopted to produce nano-functionalized biomaterials surface, and in this paper, the fabrication, characterization, and properties of biomaterials such as ceramics, metals, and polymers with nanostructured surfaces are reviewed.

252 citations

Journal ArticleDOI
TL;DR: Results obtained showed that hydroxycarbonate apatite can be formed on the surface of the coating soaked in SBF for 1 day, which indicated that the wollastonite coating possesses good bioactivity.

216 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of alloy chemistry, thermomechanical processing and surface condition on these properties is discussed and various surface modification techniques to achieve superior biocompatibility, higher wear and corrosion resistance.

4,113 citations

Journal ArticleDOI
TL;DR: A review of surface modification techniques for titanium and titanium alloys can be found in this article, where the authors have shown that the wear resistance, corrosion resistance, and biological properties can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained.
Abstract: Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, in order to improve the biological, chemical, and mechanical properties, surface modification is often performed. This article reviews the various surface modification technologies pertaining to titanium and titanium alloys including mechanical treatment, thermal spraying, sol–gel, chemical and electrochemical treatment, and ion implantation from the perspective of biomedical engineering. Recent work has shown that the wear resistance, corrosion resistance, and biological properties of titanium and titanium alloys can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained. The proper surface treatment expands the use of titanium and titanium alloys in the biomedical fields. Some of the recent applications are also discussed in this paper.

3,019 citations

Journal ArticleDOI
TL;DR: This review attempts to cover all aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.
Abstract: TiO(2) is one of the most studied compounds in materials science. Owing to some outstanding properties it is used for instance in photocatalysis, dye-sensitized solar cells, and biomedical devices. In 1999, first reports showed the feasibility to grow highly ordered arrays of TiO(2) nanotubes by a simple but optimized electrochemical anodization of a titanium metal sheet. This finding stimulated intense research activities that focused on growth, modification, properties, and applications of these one-dimensional nanostructures. This review attempts to cover all these aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.

2,735 citations

Journal ArticleDOI
TL;DR: Transparent conductors (TCs) have a multitude of applications for solar energy utilization and for energy savings, especially in buildings as discussed by the authors, which leads naturally to considerations of spectral selectivity, angular selectivity, and temporal variability of TCs, as covered in three subsequent sections.

1,471 citations