scispace - formally typeset
Search or ask a question
Author

Chulwoo Oh

Bio: Chulwoo Oh is an academic researcher from North Carolina State University. The author has contributed to research in topics: Polarization (waves) & Grating. The author has an hindex of 17, co-authored 27 publications receiving 1566 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A broadband, thin-film, polarizing beam splitter based on an anisotropic diffraction grating composed of reactive mesogens (polymerizable liquid crystals) that manifests high diffraction efficiency and high extinction ratio in both theory and experiment.
Abstract: We demonstrate a broadband, thin-film, polarizing beam splitter based on an anisotropic diffraction grating composed of reactive mesogens (polymerizable liquid crystals). This achromatic polarization grating (PG) manifests high diffraction efficiency (~100%) and high extinction ratio (⩾1000:1) in both theory and experiment. We show an operational bandwidth Δλ/λ0~56% (roughly spanning visible wavelength range) that represents more than a fourfold increase of bandwidth over conventional PGs (and significantly larger than any other grating). The diffraction angle and operational region (visible, near-infrared, midwave infrared, and ultraviolet wavelengths) may be easily tailored during fabrication. The essence of the achromatic design is a stack of two chiral PGs with an opposite twist sense and employs the principle of retardation compensation. We fully characterize its optical properties and derive the theoretical diffraction behavior.

344 citations

Journal ArticleDOI
20 Nov 2015
TL;DR: In this article, the authors describe two methods to create high-fidelity GPHs, one interferometric and another direct-write, capable of recording the wavefront of nearly any physical or virtual object.
Abstract: Throughout optics and photonics, phase is normally controlled via an optical path difference. Although much less common, an alternative means for phase control exists: a geometric phase (GP) shift occurring when a light wave is transformed through one parameter space, e.g., polarization, in such a way as to create a change in a second parameter, e.g., phase. In thin films and surfaces where only the GP varies spatially—which may be called GP holograms (GPHs)—the phase profile of nearly any (physical or virtual) object can in principle be embodied as an inhomogeneous anisotropy manifesting exceptional diffraction and polarization behavior. Pure GP elements have had poor efficiency and utility up to now, except in isolated cases, due to the lack of fabrication techniques producing elements with an arbitrary spatially varying GP shift at visible and near-infrared wavelengths. Here, we describe two methods to create high-fidelity GPHs, one interferometric and another direct-write, capable of recording the wavefront of nearly any physical or virtual object. We employ photoaligned liquid crystals to record the patterns as an inhomogeneous optical axis profile in thin films with a few μm thickness. We report on eight representative examples, including a GP lens with F/2.3 (at 633 nm) and 99% diffraction efficiency across visible wavelengths, and several GP vortex phase plates with excellent modal purity and remarkably small central defect size (e.g., 0.7 and 7 μm for topological charges of 1 and 8, respectively). We also report on a GP Fourier hologram, a fan-out grid with dozens of far-field spots, and an elaborate phase profile, which showed excellent fidelity and very low leakage wave transmittance and haze. Together, these techniques are the first practical bases for arbitrary GPHs with essentially no loss, high phase gradients (∼rad/μm), novel polarization functionality, and broadband behavior.

322 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the first full numerical analysis of polarization gratings and study their most general properties and limits by using the finite-difference time-domain (FDTD) method.
Abstract: We report the first full numerical analysis of polarization gratings (PGs), and study their most general properties and limits by using the finite-difference time-domain (FDTD) method. In this way, we avoid limiting assumptions on material properties or grating dimensions (e.g., no paraxial approximations) and provide a more complete understanding of PG diffraction behavior. We identify the fundamental delineation between diffraction regimes (thin versus thick) for anisotropic gratings and determine the conditions for $\ensuremath{\approx}100%$ diffraction efficiency in the framework of the coupled-wave $\ensuremath{\rho}$ and $Q$ parameters. Diffraction characteristics including the efficiency, spectral response, and polarization sensitivity are investigated for the two primary types of PGs with linear and circular birefringence. The angular response and finite-grating behavior (i.e., pixelation) are also examined. Comparisons with previous analytic approximations, where applicable, show good agreement.

126 citations

Patent
30 Jul 2010
TL;DR: In this paper, a beam steering apparatus includes a first beam steering stage and at least a second steerable stage arranged in-line with the first steerable beam steerage stage, and a polarization selector may be arranged to provide a circularly polarized input beam incident on the first polarization grating.
Abstract: A beam steering apparatus includes a first beam steering stage and at least a second beam steering stage arranged in-line with the first beam steering stage. The first beam steering stage includes a first polarization grating comprising a uniaxial birefringent material having a first periodic director pattern, and the second beam steering stage includes a second polarization grating comprising a uniaxial birefringent material having a second periodic director pattern. In nonmechanical embodiments, a polarization selector may be arranged to provide a circularly polarized input beam incident on the first polarization grating. In mechanical embodiments, at least one of the first polarization grating and the second polarization grating may be operable to be independently rotated about an azimuth thereof. Related methods of operation are also discussed.

115 citations

Proceedings ArticleDOI
TL;DR: In this paper, a beam steering device based on liquid crystal (LC) and polarization gratings (PGs) is proposed for wide-angle (> ± 40°), coarse beam steering.
Abstract: We introduce and demonstrate a compact, nonmechanical beam steering device based on liquid Crystal (LC) Polarization Gratings (PGs). Directional control of collimated light is essential for free-space optical communications, remote sensing, and related technologies. However, current beam steering methods often require moving parts, or are limited to small angle operation, offer low optical throughput, and are constrained by size and weight. We employ multiple layers of LCPGs to achieve wide-angle (> ±40°), coarse beam steering of 1550 nm light in a remarkably thin package. LCPGs can be made in switchable or polymer materials, and possess a continuous periodic birefringence profile, that renders several compelling properties (experimentally realized): ~ 100% experimental diffraction efficiency into a single order, high polarization sensitivity, and very low scattering. Light may be controlled within and between the zero- and first-diffraction orders by the handedness of the incident light and potentially by voltage applied to the PG itself. We implement a coarse steering device with several LCPGs matched with active halfwave LC variable retarders. Here, we present the preliminary experimental results and discuss the unique capability of this wide-angle steering.

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work presents a method allowing for the imposition of two independent and arbitrary phase profiles on any pair of orthogonal states of polarization-linear, circular, or elliptical-relying only on simple, linearly birefringent wave plate elements arranged into metasurfaces.
Abstract: We present a method allowing for the imposition of two independent and arbitrary phase profiles on any pair of orthogonal states of polarization-linear, circular, or elliptical-relying only on simple, linearly birefringent wave plate elements arranged into metasurfaces. This stands in contrast to previous designs which could only address orthogonal linear, and to a limited extent, circular polarizations. Using this approach, we demonstrate chiral holograms characterized by fully independent far fields for each circular polarization and elliptical polarization beam splitters, both in the visible. This approach significantly expands the scope of metasurface polarization optics.

805 citations

Patent
30 Oct 2017
TL;DR: In this article, the authors described methods of manufacturing a liquid crystal device including depositing a layer of liquid crystal material on a substrate and imprinting a pattern on the layer using an imprint template.
Abstract: Methods of manufacturing a liquid crystal device including depositing a layer of liquid crystal material on a substrate and imprinting a pattern on the layer of liquid crystal material using an imprint template are disclosed. The liquid crystal material can be jet deposited. The imprint template can include surface relief features, Pancharatnam-Berry Phase Effect (PBPE) structures or diffractive structures. The liquid crystal device manufactured by the methods described herein can be used to manipulate light, such as for beam steering, wavefront shaping, separating wavelengths and/or polarizations, and combining different wavelengths and/or polarizations.

533 citations

Journal ArticleDOI
TL;DR: A review of photo alignment of liquid crystals can be found in this paper, where the status of the studies and the recent achievements in the field of photoalignment of liquid crystal are described.
Abstract: The review describes the status of the studies and the recent achievements in the field of photoalignment of liquid crystals. An update classification of photoaligning materials and exposure schemes, and analyzes of the relationship between the molecular structure of the materials and characteristics of LC alignment are provided. In addition, bulk mediated photoalignment and combination of photoalignment with other alignment methods are discussed. Along with traditional, recently proposed applications of the photoalignment technique are considered.

431 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent developments in dielectric structures for shaping optical wavefronts is presented with an outlook on future potentials and challenges that need to be overcome.
Abstract: During the past few years, metasurfaces have been used to demonstrate optical elements and systems with capabilities that surpass those of conventional diffractive optics. Here, we review some of these recent developments, with a focus on dielectric structures for shaping optical wavefronts. We discuss the mechanisms for achieving steep phase gradients with high efficiency, simultaneous polarization and phase control, controlling the chromatic dispersion, and controlling the angular response. Then, we review applications in imaging, conformal optics, tunable devices, and optical systems. We conclude with an outlook on future potentials and challenges that need to be overcome.

424 citations

Journal ArticleDOI
05 Jul 2019-Science
TL;DR: A formalism—matrix Fourier optics—for treating polarization in paraxial diffractive optics is introduced, a powerful generalization of a large body of past work on optical elements in which polarization may vary spatially.
Abstract: Recent developments have enabled the practical realization of optical elements in which the polarization of light may vary spatially. We present an extension of Fourier optics-matrix Fourier optics-for understanding these devices and apply it to the design and realization of metasurface gratings implementing arbitrary, parallel polarization analysis. We show how these gratings enable a compact, full-Stokes polarization camera without standard polarization optics. Our single-shot polarization camera requires no moving parts, specially patterned pixels, or conventional polarization optics and may enable the widespread adoption of polarization imaging in machine vision, remote sensing, and other areas.

410 citations