scispace - formally typeset
Search or ask a question
Author

Chun-Chao Chen

Bio: Chun-Chao Chen is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Perovskite (structure) & Materials science. The author has an hindex of 32, co-authored 61 publications receiving 12254 citations. Previous affiliations of Chun-Chao Chen include University of California, Los Angeles & Industrial Technology Research Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The development of a high-performance low bandgap polymer that enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions, which is the first certified polymer solar cell efficiency over 10%.
Abstract: An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap 60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.

2,708 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that PBDTT-DPP, a semiconducting polymer with a low bandgap of 1.44 eV, allows tandem polymer solar cells to reach power conversion efficiencies of around 8.6%.
Abstract: Researchers demonstrate that PBDTT-DPP, a semiconducting polymer with a low bandgap of 1.44 eV, allows tandem polymer solar cells to reach power conversion efficiencies of around 8.6%.

1,406 citations

Journal ArticleDOI
07 Jan 2014-ACS Nano
TL;DR: A low-temperature processing technique is adopted to attain high-efficiency devices in both rigid and flexible substrates, using device structure substrate/ITO/PEDOT:PSS/CH(3)NH( 3)PbI(3-x)Cl(x)/PCBM/Al, where PEDOT?:PSS and PCBM are used as hole and electron transport layers, respectively.
Abstract: Perovskite compounds have attracted recently great attention in photovoltaic research. The devices are typically fabricated using condensed or mesoporous TiO2 as the electron transport layer and 2,2′7,7′-tetrakis-(N,N-dip-methoxyphenylamine)9,9′-spirobifluorene as the hole transport layer. However, the high-temperature processing (450 °C) requirement of the TiO2 layer could hinder the widespread adoption of the technology. In this report, we adopted a low-temperature processing technique to attain high-efficiency devices in both rigid and flexible substrates, using device structure substrate/ITO/PEDOT:PSS/CH3NH3PbI3–xClx/PCBM/Al, where PEDOT:PSS and PCBM are used as hole and electron transport layers, respectively. Mixed halide perovskite, CH3NH3PbI3–xClx, was used due to its long carrier lifetime and good electrical properties. All of these layers are solution-processed under 120 °C. Based on the proposed device structure, power conversion efficiency (PCE) of 11.5% is obtained in rigid substrates (glass/...

1,314 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the organic-inorganic hybrid halide perovskite and delve into its recent progress and relevant applications, highlighting its exceptional attributes including high carrier mobility, an adjustable spectral absorption range, long diffusion lengths, and the simplicity and affordability of fabrication.

867 citations

Journal ArticleDOI
TL;DR: A triple-junction tandem design is demonstrated by employing three distinct organic donor materials having bandgap energies ranging from 1.4 to 1.9 eV and can exhibit a record-high PCE of 11.5%.
Abstract: Tandem solar cells have the potential to improve photon conversion efficiencies (PCEs) beyond the limits of single-junction devices. In this study, a triple-junction tandem design is demonstrated by employing three distinct organic donor materials having bandgap energies ranging from 1.4 to 1.9 eV. Through optical modeling, balanced photon absorption rates are achieved and, thereby, the photo-currents are matched among the three subcells. Accordingly, an efficient triple-junction tandem organic solar cell can exhibit a record-high PCE of 11.5%.

773 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Abstract: The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.

5,684 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Abstract: This Review summarizes recent progress in the development of polymer solar cells. It covers the scientific origins and basic properties of polymer solar cell technology, material requirements and device operation mechanisms, while also providing a synopsis of major achievements in the field over the past few years. Potential future developments and the applications of this technology are also briefly discussed.

3,832 citations

Journal ArticleDOI
TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Abstract: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion effi ciencies of up to 6.8%, a record for fullerene-free PSCs.

3,048 citations

Journal ArticleDOI
30 Jan 2015-Science
TL;DR: A solution-based hot-casting technique is demonstrated to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains that are applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.
Abstract: State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies approaching 18%, with little cell-to-cell variability. The devices show hysteresis-free photovoltaic response, which had been a fundamental bottleneck for the stable operation of perovskite devices. Characterization and modeling attribute the improved performance to reduced bulk defects and improved charge carrier mobility in large-grain devices. We anticipate that this technique will lead the field toward synthesis of wafer-scale crystalline perovskites, necessary for the fabrication of high-efficiency solar cells, and will be applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.

2,960 citations