scispace - formally typeset
Search or ask a question
Author

Chun-Chieh Chang

Bio: Chun-Chieh Chang is an academic researcher from University of Michigan. The author has contributed to research in topics: Peptide & Ovarian cancer. The author has an hindex of 6, co-authored 6 publications receiving 1331 citations. Previous affiliations of Chun-Chieh Chang include Genentech & National Taiwan University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that fluorescent nanodiamonds can be produced in large quantities by irradiating synthetic diamond nanocrystallites with helium ions, and the fluorescence is sufficiently bright and stable to allow three-dimensional tracking of a single particle within the cell by means of either one- or two-photon-excited fluorescence microscopy.
Abstract: Fluorescent nanodiamond is a new nanomaterial that possesses several useful properties, including good biocompatibility1, excellent photostability1,2 and facile surface functionalizability2,3. Moreover, when excited by a laser, defect centres within the nanodiamond emit photons that are capable of penetrating tissue, making them well suited for biological imaging applications1,2,4. Here, we show that bright fluorescent nanodiamonds can be produced in large quantities by irradiating synthetic diamond nanocrystallites with helium ions. The fluorescence is sufficiently bright and stable to allow three-dimensional tracking of a single particle within the cell by means of either one- or two-photon-excited fluorescence microscopy. The excellent photophysical characteristics are maintained for particles as small as 25 nm, suggesting that fluorescent nanodiamond is an ideal probe for long-term tracking and imaging in vivo, with good temporal and spatial resolution.

677 citations

Journal Article
01 Jan 2008-Nature
TL;DR: It is shown that bright fluorescent nanodiamonds can be produced in large quantities by irradiating synthetic diamond nanocrystallites with helium ions, and the fluorescence is sufficiently bright and stable to allow three-dimensional tracking of a single particle within the cell by means of either one- or two-photon-excited fluorescence microscopy.
Abstract: Fluorescent nanodiamond is a new nanomaterial that possesses several useful properties, including good biocompatibility1, excellent photostability1,2 and facile surface functionalizability2,3. Moreover, when excited by a laser, defect centres within the nanodiamond emit photons that are capable of penetrating tissue, making them well suited for biological imaging applications1,2,4. Here, we show that bright fluorescent nanodiamonds can be produced in large quantities by irradiating synthetic diamond nanocrystallites with helium ions. The fluorescence is sufficiently bright and stable to allow three-dimensional tracking of a single particle within the cell by means of either one- or two-photon-excited fluorescence microscopy. The excellent photophysical characteristics are maintained for particles as small as 25 nm, suggesting that fluorescent nanodiamond is an ideal probe for long-term tracking and imaging in vivo, with good temporal and spatial resolution.

643 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the genomic and transcriptomic profiles of paired tumors from patients with triple-negative breast cancers (TNBC), and observed a typical TNBC mutational landscape with minimal shifts in copy number or TMB over time.
Abstract: Purpose: Emerging data suggest immune checkpoint inhibitors have reduced efficacy in heavily pretreated triple-negative breast cancers (TNBC), but underlying mechanisms are poorly understood. To better understand the phenotypic evolution of TNBCs, we studied the genomic and transcriptomic profiles of paired tumors from patients with TNBC. Experimental Design: We collected paired primary and metastatic TNBC specimens from 43 patients and performed targeted exome sequencing and whole-transcriptome sequencing. From these efforts, we ascertained somatic mutation profiles, tumor mutational burden (TMB), TNBC molecular subtypes, and immune-related gene expression patterns. Stromal tumor-infiltrating lymphocytes (stromal TIL), recurrence-free survival, and overall survival were also analyzed. Results: We observed a typical TNBC mutational landscape with minimal shifts in copy number or TMB over time. However, there were notable TNBC molecular subtype shifts, including increases in the Lehmann/Pietenpol-defined basal-like 1 (BL1, 11.4%–22.6%) and mesenchymal (M, 11.4%–22.6%) phenotypes, and a decrease in the immunomodulatory phenotype (IM, 31.4%–3.2%). The Burstein-defined basal-like immune-activated phenotype was also decreased (BLIA, 42.2%–17.2%). Among downregulated genes from metastases, we saw enrichment of immune-related Kyoto Encyclopedia of Genes and Genomes pathways and gene ontology (GO) terms, and decreased expression of immunomodulatory gene signatures (P Conclusions: We observed few mutational shifts, but largely consistent transcriptomic shifts in longitudinally paired TNBCs. Transcriptomic and IHC analyses revealed significantly reduced immune-activating gene expression signatures and TILs in recurrent TNBCs. These data may explain the observed lack of efficacy of immunotherapeutic agents in heavily pretreated TNBCs. Further studies are ongoing to better understand these initial observations. See related commentary by Savas and Loi, p. 526

63 citations

Journal ArticleDOI
TL;DR: Small Aβ oligomers are capable of binding to neurons at physiological concentrations and grow at rates dependent on local Aβ42:Aβ40 ratios, intriguing in light of the increased Aβ 42:A β40 ratios shown to correlate with familial Alzheimer's disease mutations.

32 citations

Journal ArticleDOI
TL;DR: Single-molecule microscopy was used to monitor Aβ oligomer formation and diffusion on a supported lipid bilayer at nanomolar peptide concentrations to monitor the mechanism underlying these Aβ40-Aβ42 interactions may feature in Alzheimer's pathology.

25 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review highlights the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications that are attracting chemists for its own characteristics.
Abstract: Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene, but is increasingly attracting chemists for its own characteristics. It is covalently decorated with oxygen-containing functional groups - either on the basal plane or at the edges - so that it contains a mixture of sp(2)- and sp(3)-hybridized carbon atoms. In particular, manipulation of the size, shape and relative fraction of the sp(2)-hybridized domains of GO by reduction chemistry provides opportunities for tailoring its optoelectronic properties. For example, as-synthesized GO is insulating but controlled deoxidation leads to an electrically and optically active material that is transparent and conducting. Furthermore, in contrast to pure graphene, GO is fluorescent over a broad range of wavelengths, owing to its heterogeneous electronic structure. In this Review, we highlight the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications.

2,937 citations

Journal ArticleDOI
TL;DR: The rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups are discussed.
Abstract: Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.

2,351 citations

Journal ArticleDOI
TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Abstract: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz*,‡ †Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States ‡Center for Bio/Molecular Science and Engineering Code 6900 and Division of Optical Sciences Code 5611, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States College of Science, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, United States Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States Sotera Defense Solutions, Crofton, Maryland 21114, United States

1,169 citations

Journal ArticleDOI
TL;DR: The physical principles that allow for magnetic field detection with NV centres are presented and first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences are discussed.
Abstract: The isolated electronic spin system of the nitrogen-vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of 'NV magnetometry'. It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.

1,033 citations