scispace - formally typeset
Search or ask a question
Author

Chun-Guey Wu

Bio: Chun-Guey Wu is an academic researcher from National Central University. The author has contributed to research in topics: Perovskite (structure) & Perovskite solar cell. The author has an hindex of 1, co-authored 1 publications receiving 472 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the inverted perovskite solar cell fabricated using a two-step method exhibited the highest fill factor (FF) of 0.85 and good efficiency of 18% based on CH3NH3PbI3.
Abstract: The inverted perovskite solar cell fabricated using a two-step method exhibited the highest FF of 0.85 and good efficiency of 18% based on CH3NH3PbI3. A small amount of H2O was added into PbI2/DMF to make a homogenous precursor solution. A high quality PbI2 film with full coverage was formed on a PEDOT:PSS surface by spin coating of the homogeneous PbI2 precursor solution. The perovskite film fabricated from the high quality PbI2 film is highly pure, smooth and very dense even without any pinhole. The champion cell achieves a remarkable fill factor (FF) of 0.85, which is the highest value reported in perovskite solar cells. The FF value is also very reproducible with less than 10% deviation for 50 cells. The cell exhibits no current hysteresis and is stable under both dark and illumination conditions in dry and inert atmospheres. The results not only provide a strategy to fabricate high efficiency inverted perovskite solar cells but also reveal how the water additive in the PbI2/DMF solution may affect the properties of PbI2 and therefore the perovskite film prepared using the two-step method and the overall photovoltaic performance of the corresponding inverted solar cell.

518 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent progress on hybrid perovskites is reviewed including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics.
Abstract: Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities.

1,200 citations

Journal ArticleDOI
TL;DR: The perovskite solar cells (PSCs) have attracted much attention because of their rapid rise to 22% efficiencies as discussed by the authors, which could revolutionize the photovoltaic industry.
Abstract: Perovskite solar cells (PSCs) have attracted much attention because of their rapid rise to 22% efficiencies. Here, we review the rapid evolution of PSCs as they enter a new phase that could revolutionize the photovoltaic industry. In particular, we describe the properties that make perovskites so remarkable, and the current understanding of the PSC device physics, including the operation of state-of-the-art solar cells with efficiencies above 20%. The extraordinary progress of long-term stability is discussed and we provide an outlook on what the future of PSCs might soon bring the photovoltaic community. Some challenges remain in terms of reducing non-radiative recombination and increasing conductivity of the different device layers, and these will be discussed in depth in this review.

924 citations

Journal ArticleDOI
TL;DR: An overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials.
Abstract: The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials.

733 citations

Journal ArticleDOI
TL;DR: An inverted bulk heterojunction perovskite-PCBM solar cell with a high fill factor of 0.82 and a power conversion efficiency of up to 16.0% was fabricated by a low-temperature two-step solution process as discussed by the authors.
Abstract: An inverted bulk heterojunction perovskite–PCBM solar cell with a high fill factor of 0.82 and a power conversion efficiency of up to 16.0% was fabricated by a low-temperature two-step solution process. The cells exhibit no significant photocurrent hysteresis and their high short-circuit current density, fill factor and efficiency are attributed to the advantageous properties of the active layer, such as its high conductivity and the improved mobility and diffusion length of charge carriers. In particular, PCBM plays a critical role in improving the quality of the light-absorbing layer by filling pinholes and vacancies between perovskite grains, resulting in a film with large grains and fewer grain boundaries. Bulk heterojunction perovskite solar cells with a high fill factor are reported.

539 citations

Journal ArticleDOI
TL;DR: The recent progress on the synthesis and fundamental aspects of mixed cation and halide perovskites correlating with device performance, long-term stability, and hysteresis are reviewed.
Abstract: Organic–inorganic halide perovskite materials (e.g., MAPbI3, FAPbI3, etc.; where MA = CH3NH3+, FA = CH(NH2)2+) have been studied intensively for photovoltaic applications. Major concerns for the commercialization of perovskite photovoltaic technology to take off include lead toxicity, long-term stability, hysteresis, and optimal bandgap. Therefore, there is still need for further exploration of alternative candidates. Elemental composition engineering of MAPbI3 and FAPbI3 has been proposed to address the above concerns. Among the best six certified power conversion efficiencies reported by National Renewable Energy Laboratory on perovskite-based solar cells, five are based on mixed perovskites (e.g., MAPbI1–xBrx, FA0.85MA0.15PbI2.55Br0.45, Cs0.1FA0.75MA0.15PbI2.49Br0.51). In this paper, we review the recent progress on the synthesis and fundamental aspects of mixed cation and halide perovskites correlating with device performance, long-term stability, and hysteresis. In the outlook, we outline the future ...

431 citations