scispace - formally typeset
Search or ask a question
Author

Chun Zhao

Bio: Chun Zhao is an academic researcher from Nanjing Medical University. The author has contributed to research in topics: Blastocyst & Embryo. The author has an hindex of 22, co-authored 57 publications receiving 1432 citations. Previous affiliations of Chun Zhao include University of Science and Technology of China & Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
24 Aug 2011-PLOS ONE
TL;DR: Serum miRNAs are differentially expressed between GDM women and controls and could be candidate biomarkers for predicting GDM.
Abstract: Background Gestational diabetes mellitus (GDM) is one type of diabetes that presents during pregnancy and significantly increases the risk of a number of adverse consequences for the fetus and mother. The microRNAs (miRNA) have recently been demonstrated to abundantly and stably exist in serum and to be potentially disease-specific. However, no reported study investigates the associations between serum miRNA and GDM. Methodology/principal findings We systematically used the TaqMan Low Density Array followed by individual quantitative reverse transcription polymerase chain reaction assays to screen miRNAs in serum collected at 16-19 gestational weeks. The expression levels of three miRNAs (miR-132, miR-29a and miR-222) were significantly decreased in GDM women with respect to the controls in similar gestational weeks in our discovery evaluation and internal validation, and two miRNAs (miR-29a and miR-222) were also consistently validated in two-centric external validation sample sets. In addition, the knockdown of miR-29a could increase Insulin-induced gene 1 (Insig1) expression level and subsequently the level of Phosphoenolpyruvate Carboxy Kinase2 (PCK2) in HepG2 cell lines. Conclusions/significance Serum miRNAs are differentially expressed between GDM women and controls and could be candidate biomarkers for predicting GDM. The utility of miR-29a, miR-222 and miR-132 as serum-based non-invasive biomarkers warrants further evaluation and optimization.

200 citations

Journal ArticleDOI
Chun Zhao1, Ran Huo1, Fuqiang Wang1, Min Lin1, Zuomin Zhou1, Jiahao Sha1 
TL;DR: Proteomic technology was used to compare sperm protein expression profiles in asthenozoospermic patients with that of normozoosPermic donors and 10 differentially expressed proteins were identified.

159 citations

Journal ArticleDOI
TL;DR: MiR-222 is a potential regulator of ERα expression in estrogen-induced insulin resistance in GDM and might be a candidate biomarker and therapeutic target for GDM.
Abstract: Omental adipose tissue plays a central role in insulin resistance in gestational diabetes mellitus (GDM), and the molecular mechanisms leading to GDM remains vague. Evidence demonstrates that maternal hormones, such as estradiol, contribute to insulin resistance in GDM. In this study we determined the differential expression patterns of microRNAs (miRNAs) in omental adipose tissues from GDM patients and pregnant women with normal glucose tolerance using AFFX miRNA expression chips. MiR-222, 1 of 17 identified differentially expressed miRNAs, was found to be significantly up-regulated in GDM by quantitative real-time PCR (P < .01), and its expression was closely related with serum estradiol level (P < .05). Furthermore, miR-222 expression was significantly increased in 3T3-L1 adipocytes with a high concentration of 17β-estradiol stimulation (P < .01), whereas the expressions of estrogen receptor (ER)-α protein and insulin-sensitive membrane transporter glucose transporter 4 (GLUT4) protein (P < .01) were markedly reduced. In addition, ERα was shown to be a direct target of miR-222 in 3T3-L1 adipocytes by using the luciferase assay. Finally, antisense oligonucleotides of miR-222 transfection was used to silence miR-222 in 3T3-L1 adipocytes. The results showed that the expressions of ERα and GLUT4, the insulin-stimulated translocation of GLUT4 from the cytoplasm to the cell membrane and glucose uptake in mature adipocytes were dramatically increased (P < .01). In conclusion, miR-222 is a potential regulator of ERα expression in estrogen-induced insulin resistance in GDM and might be a candidate biomarker and therapeutic target for GDM.

121 citations

Journal ArticleDOI
TL;DR: Serum miRNAs are differentially expressed between PCOS patients and controls, and bioinformatics analysis indicated that the predicted targets function of the three miRN as mainly involved in the metastasis, cell cycle, apoptosis and endocrine.
Abstract: Background: Polycystic ovary syndrome (PCOS), the most common endocrinopathy in women of reproductive age, is characterized by polycystic ovaries, chronic anovulation, hyperandrogenism and insulin resistance. Despite the high prevalence of hyperandrogenemia, a definitive endocrine marker for PCOS has so far not been identified. Circulating miRNAs have recently been shown to serve as diagnostic/prognostic biomarkers in patients with cancers. Our current study focused on the altered expression of serum miRNAs and their correlation with PCOS. Method and Results: We systematically used the TaqMan Low Density Array followed by individual quantitative reverse transcription polymerase chain reaction assays to identify and validate the expression of serum miRNAs of PCOS patients. The expression levels of three miRNAs (miR-222, miR-146a and miR-30c) were significantly increased in PCOS patients with respect to the controls in our discovery evaluation and followed validation. The area under the receiver operating characteristic (ROC) curve (AUC) is 0.799, 0.706, and 0.688, respectively. The combination of the three miRNAs using multiple logistic regression analysis showed a larger AUC (0.852) that was more efficient for the diagnosis of PCOS. In addition, logistic binary regression analyses show miR-222 is positively associated with serum insulin, while miR-146a is negatively associated with serum testosterone. Furthermore, bioinformatics analysis indicated that the predicted targets function of the three miRNAs mainly involved in the metastasis, cell cycle, apoptosis and endocrine. Conclusion: Serum miRNAs are differentially expressed between PCOS patients and controls. We identified and validated a class of three serum miRNAs that could act as novel non-invasive biomarkers for diagnosis of PCOS. These miRNAs may be involved in the pathogenesis of PCOS.

110 citations

Journal ArticleDOI
Zhonghua Shi1, Wei Long1, Chun Zhao1, Xirong Guo1, Rong Shen1, Hongjuan Ding1 
09 May 2013-PLOS ONE
TL;DR: Bioinformatics analysis showed that differentially expressed placental mitochondria proteins were involved in many critical processes in the development of pre-eclampsia such as apoptosis, fatty acid oxidation, the respiratory chain, reactive oxygen species generation, the tricarboxylic acid cycle and oxidative stress.
Abstract: Introduction Pre-eclampsia (PE), a severe pregnancy-specific disease characterized by the new onset of hypertension, proteinuria, edema, and a series of other systematic disorders, is a state of widespread mitochondrial dysfunction of the placenta. Methods We compared the morphology of mitochondria in pre-eclamptic and normotensive placentae using electron microscopy. To reveal the systematic protein expression changes of placental mitochondria that might explain the pathogenesis of PE, we performed iTRAQ analysis combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) on differentially expressed placental mitochondria proteins from 4 normotensive and 4 pre-eclamptic pregnancies. Bioinformatics analysis was used to find the relative processes that these differentially expressed proteins were involved in. Three differentially expressed proteins were chosen to confirm by Western blotting and immunohistochemistry. Results Morphological data demonstrated degenerative and apoptotic changes in the mitochondria of pre-eclamptic placentae. We found four proteins were upregulated and 22 proteins were downregulated in pre-eclamptic placentae compared with normotensive placentae. Bioinformatics analysis showed that these proteins were involved in many critical processes in the development of pre-eclampsia such as apoptosis, fatty acid oxidation, the respiratory chain, reactive oxygen species generation, the tricarboxylic acid cycle and oxidative stress. Conclusions This preliminary work provides a better understanding of the proteomic alterations of mitochondria from pre-eclamptic placentae and may aid in our understanding of the importance of mitochondria in the development of pre-eclampsia.

88 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: What is known about the pathophysiology of GDM, and where there are gaps in the literature that warrant further exploration are discussed, are discussed.
Abstract: Gestational diabetes mellitus (GDM) is a serious pregnancy complication, in which women without previously diagnosed diabetes develop chronic hyperglycemia during gestation. In most cases, this hyperglycemia is the result of impaired glucose tolerance due to pancreatic β-cell dysfunction on a background of chronic insulin resistance. Risk factors for GDM include overweight and obesity, advanced maternal age, and a family history or any form of diabetes. Consequences of GDM include increased risk of maternal cardiovascular disease and type 2 diabetes and macrosomia and birth complications in the infant. There is also a longer-term risk of obesity, type 2 diabetes, and cardiovascular disease in the child. GDM affects approximately 16.5% of pregnancies worldwide, and this number is set to increase with the escalating obesity epidemic. While several management strategies exist—including insulin and lifestyle interventions—there is not yet a cure or an efficacious prevention strategy. One reason for this is that the molecular mechanisms underlying GDM are poorly defined. This review discusses what is known about the pathophysiology of GDM, and where there are gaps in the literature that warrant further exploration.

736 citations

Journal ArticleDOI
05 Oct 2017-Cell
TL;DR: These studies show that ATMs in obese mice secrete exosomes containing miRNA cargo, which can be transferred to insulin target cell types through mechanisms of paracrine or endocrine regulation with robust effects on cellular insulin action, in vivo insulin sensitivity, and overall glucose homeostasis.

712 citations

Journal ArticleDOI
TL;DR: Some of the clinical evidence for the use of miRNAs as biomarkers in diagnostics is summarized and some general perspectives on their use in clinical situations are provided.
Abstract: MicroRNAs (miRNAs) are a group of small non-coding RNAs that are involved in regulating a range of developmental and physiological processes; their dysregulation has been associated with development of diseases including cancer. Circulating miRNAs and exosomal miRNAs have also been proposed as being useful in diagnostics as biomarkers for diseases and different types of cancer. In this review, miRNAs are discussed as biomarkers for cancer and other diseases, including viral infections, nervous system disorders, cardiovascular disorders, and diabetes. We summarize some of the clinical evidence for the use of miRNAs as biomarkers in diagnostics and provide some general perspectives on their use in clinical situations. The analytical challenges in using miRNAs in cancer and disease diagnostics are evaluated and discussed. Validation of specific miRNA signatures as biomarkers is a critical milestone in diagnostics.

520 citations

Journal ArticleDOI
TL;DR: In this paper, microRNAs (miRNAs) are used as biomarkers for early detection of the disease and identification of individuals at risk of developing complications, which would greatly improve the care of these patients.
Abstract: Diabetes mellitus is characterized by insulin secretion from pancreatic β cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of β cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect β-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications.

476 citations