scispace - formally typeset
Search or ask a question
Author

Chung Ho Ko

Bio: Chung Ho Ko is an academic researcher from Gyeongsang National University. The author has contributed to research in topics: Germination & Superoxide dismutase. The author has an hindex of 7, co-authored 13 publications receiving 278 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Modulation in the spectral quality particularly by the blue LED induced the antioxidant defense line and was directly correlated with the enhancement of phytochemicals, so the incorporation of blue or red LED light sources during in vitro propagation of R. glutinosa can be a beneficial way to increase the medicinal values of the plant.
Abstract: The objective of the current study is to determine the effect of light quality on enhancement of growth, phytochemicals, antioxidant potential, and antioxidant enzyme activities at in vitro cultures of Rehmannia glutinosa Libosch. In vitro-grown shoot tip explants were cultured on the plant growth regulator (PGR)-free Murashige and Skoog (MS) medium and cultured under a conventional cool white fluorescent light (control), blue light emitting diode (LED) light or red LED light. After four weeks, the growth traits along with total phenol content, total flavonoid content, free radical scavenging activities, and antioxidant enzyme activities were measured. Interestingly, the blue or red LED treatments showed a significant increase in growth parameters compared with the cool white florescent light. In addition, the LED treatments increased the total phenol and flavonoid levels in leaf and root extracts. Furthermore, data on the total antioxidant capacity, reducing power potential, and DPPH radical scavenging capacity also revealed the enhancement of antioxidant capacity under both blue and red LED treatments. Especially, the blue LED treatment significantly increased the antioxidant enzyme activities in both the leaf and root, followed by the red LED treatment. Modulation in the spectral quality particularly by the blue LED induced the antioxidant defense line and was directly correlated with the enhancement of phytochemicals. Therefore, the incorporation of blue or red LED light sources during in vitro propagation of R. glutinosa can be a beneficial way to increase the medicinal values of the plant.

171 citations

Journal ArticleDOI
TL;DR: The results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression.
Abstract: Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression.

83 citations

Journal ArticleDOI
16 Jun 2016-PLOS ONE
TL;DR: In this paper, the authors investigated graft unions of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C year/night).
Abstract: Background Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions) of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C day/night).

35 citations

Journal ArticleDOI
TL;DR: In this article, the effect of Si on redox homeostasis and protein expression was studied in Rosa hybrida ‘Rock Fire.’ Acclimatized plantlets were grown hydroponically under salt stress (50 mM NaCl) for 15 days with or without 0 or 1.8 mM of potassium silicate (K2SiO3).
Abstract: Silicon (Si) is considered one of the most beneficial elements for plant growth and development. Its advantageous effects are visible during abiotic and biotic stresses. In this experiment, the effect of Si on redox homeostasis and protein expression was studied in Rosa hybrida ‘Rock Fire.’ Acclimatized plantlets were grown hydroponically under salt stress (50 mM NaCl) for 15 days with or without 0 or 1.8 mM of potassium silicate (K2SiO3). Exposure of R. hybrida ‘Rock Fire’ to salinity restricted root growth. The addition of Si with NaCl significantly improved fresh and dry weights of roots. The presence of Si in the nutrient solution induced the growth of root hairs during both normal and stress conditions. Under salt stress, higher lipid peroxidation and excessive accumulation of reactive oxygen species (ROS) such as superoxide (O2 −) and hydrogen peroxide (H2O2) affect the redox homeostasis potential of plants. However, addition of Si decreased the content of malondialdehyde, O2 −, and H2O2. Detoxification of ROS was highly correlated with the enhanced activity and expression of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX). In addition, the two-dimensional gel electrophoresis results illustrated the improved abundance of protein on roots to overcome the salinity stress due to the addition of Si. Out of 70 spots identified, 59 proteins [except hypothetical (6%)] were functionally classified into 8 groups such as redox homeostasis/defense (15%), transcription/translation (26%), lipid metabolism (14%), signaling (13%), energy and carbohydrate metabolism (10%), transportation/metal ion-binding (7%), terpene synthesis (3%), and cell-wall regulation (6%). The observed results suggest that the substantial improvement of redox homeostasis by Si could facilitate preventive mechanism(s) to overcome the metabolic disorder emanate under salt stress.

32 citations

Journal ArticleDOI
TL;DR: The findings reported in this work could facilitate a deeper understanding on potential mechanism(s) adapted by rose due to the exogenous Si supplementation during the salinity stress.
Abstract: Beneficial effects of silicon (Si) on growth and development have been witnessed in several plants. Nevertheless, studies on roses are merely reported. Therefore, the present investigation was carried out to illustrate the impact of Si on photosynthesis, antioxidant defense and leaf proteome of rose under salinity stress. In vitro-grown, acclimatized Rosa hybrida ‘Rock Fire’ were hydroponically treated with four treatments, such as control, Si (1.8 mM), NaCl (50 mM), and Si+NaCl. After 15 days, the consequences of salinity stress and the response of Si addition were analyzed. Scorching of leaf edges and stomatal damages occurred due to salt stress was ameliorated under Si supplementation. Similarly, reduction of gas exchange, photosynthetic pigments, higher lipid peroxidation rate, and accumulation of reactive oxygen species under salinity stress were mitigated in Si treatment. Lesser oxidative stress observed was correlated with the enhanced activity and expression of antioxidant enzymes, such as superoxide dismutase, catalase, and ascorbate peroxidase in Si+NaCl treatment. Importantly, sodium transportation was synergistically restricted with the stimulated counter-uptake of potassium in Si+NaCl treatment. Furthermore, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that out of 40 identified proteins, on comparison with control 34 proteins were down-accumulated and six proteins were up-accumulated due to salinity stress. Meanwhile, addition of Si with NaCl treatment enhanced the abundance of 30 proteins and downregulated five proteins. Differentially-expressed proteins were functionally classified into six groups, such as photosynthesis (22%), carbohydrate/energy metabolism (20%), transcription/translation (20%), stress/redox homeostasis (12%), ion binding (13%), and ubiquitination (8%). Hence, the findings reported in this work could facilitate a deeper understanding on potential mechanism(s) adapted by rose due to the exogenous Si supplementation during the salinity stress.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The effects of salinity on vegetable growth and how management practices (irrigation, drainage, and fertilization) can prevent soil and water salinization and mitigate the adverse effects of Salinity are discussed.
Abstract: Salinity is a major problem affecting crop production all over the world: 20% of cultivated land in the world, and 33% of irrigated land, are salt-affected and degraded. This process can be accentuated by climate change, excessive use of groundwater (mainly if close to the sea), increasing use of low-quality water in irrigation, and massive introduction of irrigation associated with intensive farming. Excessive soil salinity reduces the productivity of many agricultural crops, including most vegetables, which are particularly sensitive throughout the ontogeny of the plant. The salinity threshold (ECt) of the majority of vegetable crops is low (ranging from 1 to 2.5 dS m−1 in saturated soil extracts) and vegetable salt tolerance decreases when saline water is used for irrigation. The objective of this review is to discuss the effects of salinity on vegetable growth and how management practices (irrigation, drainage, and fertilization) can prevent soil and water salinization and mitigate the adverse effects of salinity.

759 citations

Journal ArticleDOI
09 Feb 2019
TL;DR: In the present review, Si-transporters identified in different species, their evolution and the Si-uptake mechanism have been addressed, and the role of Si in biotic and abiotic stress tolerance has been discussed.
Abstract: Silicon (Si) being considered as a non-essential element for plant growth and development finds its role in providing several benefits to the plant, especially under stress conditions. Thus, Si can be regarded as “multi-talented” quasi-essential element. It is the most abundant element present in the earth’s crust after oxygen predominantly as a silicon dioxide (SiO2), a form plants cannot utilize. Plants take up Si into their root from the soil in the plant-available forms (PAF) such as silicic acid or mono silicic acid [Si(OH)4 or H4SiO4]. Nevertheless, besides being abundantly available, the PAF of Si in the soil is mostly a limiting factor. To improve Si-uptake and derived benefits therein in plants, understanding the molecular basis of Si-uptake and transport within the tissues has great importance. Numerous Si-transporters (influx and efflux) have been identified in both monocot and dicot plants. A difference in the root anatomy of both monocot and dicot plants leads to a difference in the Si-uptake mechanism. In the present review, Si-transporters identified in different species, their evolution and the Si-uptake mechanism have been addressed. Further, the role of Si in biotic and abiotic stress tolerance has been discussed. The information provided here will help to plan the research in a better way to develop more sustainable cropping system by harnessing Si-derived benefits.

150 citations

Journal ArticleDOI
TL;DR: The results collectively demonstrate the definite roles of Se-NPs in management of soil salinity-induced adverse effects on not only strawberry plants but also other crops.

144 citations

Journal ArticleDOI
TL;DR: A model is proposed to explain how Si absorption alleviates stress in plants grown under saline conditions through the conjugated action of different aquaporins.
Abstract: Silicon (Si) is an abundant and differentially distributed element in soils that is believed to have important biological functions. However, the benefits of Si and its essentiality in plants are controversial due to differences among species in their ability to take up this element. Despite this, there is a consensus that the application of Si improves the water status of plants under abiotic stress conditions. Hence, plants treated with Si are able to maintain a high stomatal conductance and transpiration rate under salt stress, suggesting that a reduction in Na+ uptake occurs due to deposition of Si in the root. In addition, root hydraulic conductivity increases when Si is applied. As a result, a Si-mediated upregulation of aquaporin (PIP) gene expression is observed in relation to increased root hydraulic conductivity and water uptake. Aquaporins of the subclass nodulin 26-like intrinsic proteins (NIPs) are further involved in allowing Si entry into the cell. Therefore, on the basis of available published results and recent developments, we propose a model to explain how Si absorption alleviates stress in plants grown under saline conditions through the conjugated action of different aquaporins

126 citations

Journal ArticleDOI
TL;DR: Overall, exogenous nano-silicon alleviated the salt stress by increase in K+ concentration, antioxidant activities, non-enzymatic compounds and decreasing of Na+, concentration, lipid peroxidation, and reactive oxygen species production.
Abstract: Materials with a particle size less than 100 nm are classified as nano-materials. The physical and chemical properties of nano-materials can vary considerably from those of bulk materials of the same composition. Silicon (Si) still fails to get recognized as an essential nutrient for plant growth and development, however the beneficial effects in terms of growth, biotic and abiotic stress resistance have been indicated in a variety of plant species for their growth. The aim of this study was to investigate the effects of different nano-silicon rates on the growth and antioxidant activities of soybean (Glycine max L. cv. M7) under salt stress. The results showed that salinity decreased shoot and root dry weight, potassium (K+) concentration in the root and leaf; however, increased sodium (Na+) concentration, catalase, peroxidase, ascorbate peroxidase and superoxide dismutase activities, phenolic components, ascorbic acid and α-tocopherol contents, lipid peroxidation, hydrogen peroxide, and oxygen radical’s concentration. Between the treatments, 0.5 and 1 mM of nanosilicon oxide (nano-SiO2) improved shoot and root growth of seedlings. In contrast, a foliar application of SiO2 at 2 mM reduced the soybean growth. Overall, exogenous nano-silicon alleviated the salt stress by increase in K+ concentration, antioxidant activities, non-enzymatic compounds and decreasing of Na+ concentration, lipid peroxidation, and reactive oxygen species production.

112 citations