scispace - formally typeset
Search or ask a question
Author

Chung K. Law

Bio: Chung K. Law is an academic researcher from Princeton University. The author has contributed to research in topics: Combustion & Premixed flame. The author has an hindex of 95, co-authored 640 publications receiving 32945 citations. Previous affiliations of Chung K. Law include General Motors & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
01 Jan 2005
TL;DR: In this article, a systematic approach for mechanism reduction was developed and demonstrated, which consists of the generation of skeletal mechanisms from detailed mechanism using directed relation graph with specified accuracy requirement, and the subsequent generation of reduced mechanisms from the skeletal mechanisms using computational singular perturbation based on the assumption of quasi-steady state species.
Abstract: A systematic approach for mechanism reduction was developed and demonstrated. The approach consists of the generation of skeletal mechanisms from detailed mechanism using directed relation graph with specified accuracy requirement, and the subsequent generation of reduced mechanisms from the skeletal mechanisms using computational singular perturbation based on the assumption of quasi-steady-state species. Both stages of generation are guided by the performance of PSR for high-temperature chemistry and auto-ignition delay for low- to moderately high-temperature chemistry. The demonstration was performed for a detailed ethylene oxidation mechanism consisting of 70 species and 463 elementary reactions, resulting in a specific skeletal mechanism consisting of 33 species and 205 elementary reactions, and a specific reduced mechanism consisting of 20 species and 16 global reactions. Calculations for laminar flame speeds and nonpremixed counterflow ignition using either the skeletal mechanism or the reduced mechanism show very close agreement with those obtained by using the detailed mechanism over wide parametric ranges of pressure, temperature, and equivalence ratio.

825 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed kinetic mechanism for the pyrolysis and combustion of a large variety of fuels at high temperature conditions is presented, and the authors identify aspects of the mechanism that require further revision.

817 citations

Journal ArticleDOI
TL;DR: In this article, a series of time-resolved photographic images which map all the collision regimes in terms of the collision Weber number and the impact parameter were used to identify the controlling factors for different outcomes.
Abstract: An experimental investigation of the binary droplet collision dynamics was conducted, with emphasis on the transition between different collision outcomes. A series of time-resolved photographic images which map all the collision regimes in terms of the collision Weber number and the impact parameter were used to identify the controlling factors for different outcomes. The effects of liquid and gas properties were studied by conducting experiments with both water and hydrocarbon droplets in environments of different gases (air, nitrogen, helium and ethylene) and pressures, the latter ranging from 0.6 to 12 atm. It is shown that, by varying the density of the gas through its pressure and molecular weight, water and hydrocarbon droplets both exhibit five distinct regimes of collision outcomes, namely (I) coalescence after minor deformation, (II) bouncing, (III) coalescence after substantial deformation, (IV) coalescence followed by separation for near head-on collisions, and (V) coalescence followed by separation for off-centre collisions. The present result therefore extends and unifies previous experimental observations, obtained at one atmosphere air, that regimes II and II do not exist for water droplets. Furthermore, it was found that coalescence of the hydrocarbon droplets is promoted in the presence of gaseous hydrocarbons in the environment, suggesting that coalescence is facilitated when the environment contains vapour of the liquid mass. Collision at high-impact inertia was also studied, and the mechanisms for separation of the coalescence are discussed based on time-resolved collision images. A coalescence/separation criterion defining the transition between regimes III and IV for the head-on collisions was derived and found to agree well with the experimental data.

688 citations

Journal ArticleDOI
TL;DR: The need and prospect of incorporating realistic fuel chemistry in large-scale simulations of combustion phenomena and combustor performance are reviewed in this paper, where skeletal reduction especially through directed relation graph, time-scale reduction based on the concepts of quasi-steady species enabled through computational singular perturbation, the lumping of isomers and of species with similar diffusivities; on-the-fly stiffness removal; the relative merits of implicit versus explicit solvers; and computation cost minimization achieved through tabulation and the judicious re-sequencing of the computational steps in arithmetic evaluations.

635 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: The level set method is couple to a wide variety of problems involving external physics, such as compressible and incompressible flow, Stefan problems, kinetic crystal growth, epitaxial growth of thin films, vortex-dominated flows, and extensions to multiphase motion.

2,174 citations

Journal ArticleDOI
TL;DR: In this paper, a front-tracking method for multiphase flows is presented, which is based on writing one set of governing equations for the whole computational domain and treating the different phases as one fluid with variable material properties.

2,011 citations

Journal ArticleDOI
TL;DR: In this paper, the steady laminar counterflow diffusion flame exhibits a very similar scalar structure as unsteady distorted mixing layers in a turbulent flow field, and the conserved scalar model is interpreted as the most basic flamelet structure.

1,933 citations