scispace - formally typeset
Search or ask a question
Author

Chunming Shi

Bio: Chunming Shi is an academic researcher from Beijing Normal University. The author has contributed to research in topics: Plateau & Precipitation. The author has an hindex of 12, co-authored 25 publications receiving 836 citations. Previous affiliations of Chunming Shi include Chinese Academy of Sciences & University of Lapland.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors established a database of precipitation δ18O and used different models to evaluate the climatic controls of precipitation over the Tibetan Plateau (TP), revealing three distinct domains associated with the influence of the westerlies (northern TP), Indian monsoon (southern TP), and transition in between.
Abstract: The stable oxygen isotope ratio (δ18O) in precipitation is an integrated tracer of atmospheric processes worldwide. Since the 1990s, an intensive effort has been dedicated to studying precipitation isotopic composition at more than 20 stations in the Tibetan Plateau (TP) located at the convergence of air masses between the westerlies and Indian monsoon. In this paper, we establish a database of precipitation δ18O and use different models to evaluate the climatic controls of precipitation δ18O over the TP. The spatial and temporal patterns of precipitation δ18O and their relationships with temperature and precipitation reveal three distinct domains, respectively associated with the influence of the westerlies (northern TP), Indian monsoon (southern TP), and transition in between. Precipitation δ18O in the monsoon domain experiences an abrupt decrease in May and most depletion in August, attributable to the shifting moisture origin between Bay of Bengal (BOB) and southern Indian Ocean. High-resolution atmospheric models capture the spatial and temporal patterns of precipitation δ18O and their relationships with moisture transport from the westerlies and Indian monsoon. Only in the westerlies domain are atmospheric models able to represent the relationships between climate and precipitation δ18O. More significant temperature effect exists when either the westerlies or Indian monsoon is the sole dominant atmospheric process. The observed and simulated altitude-δ18O relationships strongly depend on the season and the domain (Indian monsoon or westerlies). Our results have crucial implications for the interpretation of paleoclimate records and for the application of atmospheric simulations to quantifying paleoclimate and paleo-elevation changes.

604 citations

Journal ArticleDOI
TL;DR: It is shown that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere.
Abstract: In view of future changes in climate, it is important to better understand how different plant functional groups (PFGs) respond to warmer and drier conditions, particularly in temperate regions where an increase in both the frequency and severity of drought is expected. The patterns and mechanisms of immediate and delayed impacts of extreme drought on vegetation growth remain poorly quantified. Using satellite measurements of vegetation greenness, in-situ tree-ring records, eddy-covariance CO2 and water flux measurements, and meta-analyses of source water of plant use among PFGs, we show that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere (NH). Deep−rooted forests exhibit a drought legacy response with reduced growth during up to 4 years after an extreme drought, whereas shrubs and grass have drought legacy effects of approximately 2 years and 1 year, respectively. Statistical analyses partly attribute the differences in drought legacy effects among PFGs to plant eco-hydrological properties (related to traits), including plant water use and hydraulic responses. These results can be used to improve the representation of drought response of different PFGs in land surface models, and assess their biogeochemical and biophysical feedbacks in response to a warmer and drier climate. This article is protected by copyright. All rights reserved.

212 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the potential of tree-ring cellulose d18O and d13C records for reconstructing climate variability in the southeast Tibetan Plateau and show that intra and inter-tree variability is negligible, and intertree coherence is sufficient to build robust treering d18 o or d13 c chronologies based on only four trees.

59 citations

Journal ArticleDOI
TL;DR: In this paper, a tree-ring δ18O chronology of Linzhi spruce, spanning from AD 1781 to 2005, was developed in Bomi, Southeast Tibetan Plateau (TP).
Abstract: . A tree-ring δ18O chronology of Linzhi spruce, spanning from AD 1781 to 2005, was developed in Bomi, Southeast Tibetan Plateau (TP). During the period with instrumental data (AD 1961–2005), this record is strongly correlated with regional CRU (Climate Research Unit) summer cloud data, which is supported by a precipitation δ18O simulation conducted with the isotope-enabled atmospheric general circulation model LMDZiso. A reconstruction of a regional summer cloud index, based upon the empirical relationship between cloud and diurnal temperature range, was therefore achieved. This index reflects regional moisture variability in the past 225 yr. The climate appears drier and more stable in the 20th century than previously. The drying trend in late 19th century of our reconstruction is consistent with a decrease in the TP glacier accumulation recorded in ice cores. An exceptional dry decade is documented in the 1810s, possibly related to the impact of repeated volcanic eruptions on monsoon flow.

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors used tree-ring width chronologies of Abies squamata and Sabina squamat to detect a long-term persistent warming trend, starting in the 1820s, at a rate of 0.45 ± 0.09°C/century (1820−2009).
Abstract: Despite instrumental records showing recent large temperature rises on the Tibetan Plateau (TP), only a few tree-ring temperature reconstructions do capture this warming trend. Here, we sampled 260 trees from seven Alpine treeline locations across the southeast TP. Standardized tree-ring width chronologies of Abies squamata and Sabina squamat were produced following Regional Curve Standardization detrending. The leading principal component of these records is well correlated with the regional summer (JJA) minimum temperature (MinT) (R2 = 0.47, P < 0.001, 1953–2009). Hence we produce a regional summer MinT reconstruction spanning the last 212 years. This reconstruction reveals a long-term persistent warming trend, starting in the 1820s, at a rate of 0.45 ± 0.09 °C/century (1820–2009). This trend is also detected since the 1820s in the Asian summer MinT reconstruction produced by the PAGES 2K project, with a very close warming rate (0.43 ± 0.08 °C/century, 1820–1989). Our record also displays an enhanced multi-decadal variability since the mid-twentieth century. The 1990s–2000s are the warmest of our whole record, due to the superposition of the gradual warming trend and decadal variability during this interval. The strongest decadal cooling occurs during the 1950s and the largest warming trend during the 1970s. The magnitude of warming from 1973 to 2003 was larger than the total warming trend from 1820s to 2009. Extreme events are also more frequent since 1950. The pattern of multi-decadal variability has similarities with the Atlantic multi-decadal oscillation, suggesting common causality. CMIP5 historical simulations fail to capture both the magnitude and timing of this multi-decadal variability. The ensemble CMIP5 average produces a steady warming trend starting in the 1970s, which only accounts for about 60 % of the observed warming trend during this period. We conclude that TP summer temperature could reflect a climate response to increased greenhouse gas concentrations, however modulated by multi-decadal variations common with the Atlantic sector.

41 citations


Cited by
More filters
01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

07 May 2015
TL;DR: It is shown that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length.
Abstract: Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km2 (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate.

693 citations

01 Apr 2013
TL;DR: It is found that wide areas of the world display a strong relationship between the number of hot days in the regions’ hottest month and preceding precipitation deficits, and effects of soil moisture-temperature coupling are geographically more widespread than commonly assumed.
Abstract: Global warming increases the occurrence probability of hot extremes, and improving the predictability of such events is thus becoming of critical importance. Hot extremes have been shown to be induced by surface moisture deficits in some regions. In this study, we assess whether such a relationship holds at the global scale. We find that wide areas of the world display a strong relationship between the number of hot days in the regions’ hottest month and preceding precipitation deficits. The occurrence probability of an above-average number of hot days is over 70% after precipitation deficits in most parts of South America as well as the Iberian Peninsula and Eastern Australia, and over 60% in most of North America and Eastern Europe, while it is below 30–40% after wet conditions in these regions. Using quantile regression analyses, we show that the impact of precipitation deficits on the number of hot days is asymmetric, i.e. extreme high numbers of hot days are most strongly influenced. This relationship also applies to the 2011 extreme event in Texas. These findings suggest that effects of soil moisture-temperature coupling are geographically more widespread than commonly assumed.

416 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of recent progress on climate change on the Tibetan Plateau with the aim of providing a comprehensive understanding of changes in climate variables is presented, and future research directions are recommended.
Abstract: The Tibetan Plateau (TP) is undergoing significant warming since the 1950s. During the past two decades, extensive research has been conducted to investigate the climate change on the plateau. This review presents an overview of recent progress on climate change on the TP with the aim of providing a comprehensive understanding of changes in climate variables. Long-term observation data from meteorological stations presented by the published literature were used to show the trends in various climate variables. The TP is overall getting warmer and wetter during the past decades. Temperature is significantly increased, especially since the 1980s. The overall warming rate ranges from 0.16 to 0.67°C decade−1 since the 1950s during different periods. The TP shows a uniform warming trend with the most significant warming in the northern part. Precipitation is slightly increased, and the spatial pattern of changes in precipitation is variable. The annual precipitation is increasing in most areas of the TP. Some subregions are becoming wetter, while some subregions are becoming drier. Pan evaporation, reference evapotranspiration, and potential evapotranspiration have been found to decrease since the 1960s. Actual evapotranspiration is significantly increased since the 1960s. Wind speed and sunshine duration increased up to the 1970s and then decreased significantly afterwards. Relative humidity fluctuated up and down to the end of the 1990s and appeared to decrease afterwards. Vapor pressure deficit shows an overall increasing trend since the 1970s. Causes of changes in the climate variables are presented, and future research directions are recommended.

371 citations

Journal ArticleDOI
17 Apr 2020-Science
TL;DR: Recent progress is examined in understanding of how the future looks for forests growing in a hotter and drier atmosphere.
Abstract: Trees are the living foundations on which most terrestrial biodiversity is built. Central to the success of trees are their woody bodies, which connect their elevated photosynthetic canopies with the essential belowground activities of water and nutrient acquisition. The slow construction of these carbon-dense, woody skeletons leads to a slow generation time, leaving trees and forests highly susceptible to rapid changes in climate. Other long-lived, sessile organisms such as corals appear to be poorly equipped to survive rapid changes, which raises questions about the vulnerability of contemporary forests to future climate change. The emerging view that, similar to corals, tree species have rather inflexible damage thresholds, particularly in terms of water stress, is especially concerning. This Review examines recent progress in our understanding of how the future looks for forests growing in a hotter and drier atmosphere.

326 citations