scispace - formally typeset
Search or ask a question
Author

Chunwei Guo

Other affiliations: Chinese Academy of Sciences
Bio: Chunwei Guo is an academic researcher from China Meteorological Administration. The author has contributed to research in topics: Precipitation & Storm. The author has an hindex of 6, co-authored 10 publications receiving 115 citations. Previous affiliations of Chunwei Guo include Chinese Academy of Sciences.
Topics: Precipitation, Storm, Ice nucleus, Graupel, Convection

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the characteristics of raindrop size distributions and polarimetric radar parameters retrieved by T-matrix for stratiform and convective precipitation in Beijing and Zhangbei (northern China), and Yangjiang (southern China) are studied and compared based on RSD data observed with PARSIVEL disdrometers in these three different climatic regions.

77 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of upper and lower-level weather systems in heavy rain in Beijing and its surrounding areas from 21 to 22 July 2012, and showed that the precipitation in Beijing can be divided into two phases: a warm-sector precipitation phase, ahead of the cold front, and a cold front precipitation phase.

23 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper investigated the spatial and temporal variations of annual and seasonal precipitation from 1962 to 2011 in Qinghai Province, China using four statistical methods and found that the reduction of precipitation in densely populated eastern and southeastern regions is closely related to human activities.

19 citations

Journal ArticleDOI
TL;DR: In this article, the dynamical, thermodynamical and microphysical structures of convective cells associated with a squall line that occurred on 23 June 2011 in northern China are investigated using observational data and the Regional Atmospheric Modeling System (RAMS).

15 citations

Journal ArticleDOI
Huiling Yang1, Hui Xiao1, Chunwei Guo, Guang Wen1, Qi Tang1, Yue Sun1 
TL;DR: Wang et al. as discussed by the authors investigated the effect of cloud condensation nuclei (CCN) concentrations on microphysical processes and precipitation characteristics of hailstorms in a semi-arid region of northern China.
Abstract: Numerical simulations are carried out to investigate the effect of cloud condensation nuclei (CCN) concentrations on microphysical processes and precipitation characteristics of hailstorms. Two hailstorm cases are simulated, a spring case and a summer case, in a semiarid region of northern China, with the Regional Atmospheric Modeling System. The results are used to investigate the differences and similarities of the CCN effects between spring and summer hailstorms. The similarities are: (1) The total hydrometeor mixing ratio decreases, while the total ice-phase mixing ratio enhances, with increasing CCN concentration; (2) Enhancement of the CCN concentration results in the production of a greater amount of small-sized hydrometeor particles, but a lessening of large-sized hydrometeor particles; (3) As the CCN concentration increases, the supercooled cloud water and rainwater make a lesser contribution to hail, while the ice-phase hydrometeors take on active roles in the growth of hail; (4) When the CCN concentration increases, the amount of total precipitation lessens, while the role played by liquid-phase rainfall in the amount of total precipitation reduces, relatively, compared to that of ice-phase precipitation. The differences between the two storms include: (1) An increase in the CCN concentration tends to reduce pristine ice mixing ratios in the spring case but enhance them in the summer case; (2) Ice-phase hydrometeor particles contribute more to hail growth in the spring case, while liquid water contributes more in the summer case; (3) An increase in the CCN concentration has different effects on surface hail precipitation in different seasons.

9 citations


Cited by
More filters
01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

01 Apr 2013
TL;DR: In this paper, the authors investigated the presence of trends in annual maximum daily precipitation time series obtained from a global dataset of 8326 high-quality land-based observing stations with more than 30 years of record over the period from 1900 to 2009.
Abstract: This study investigates the presence of trends in annual maximum daily precipitation time series obtained from a global dataset of 8326 high-quality land-based observing stations with more than 30 years of record over the period from 1900 to 2009. Two complementary statistical techniques were adopted to evaluate the possible nonstationary behavior of these precipitation data. The first was a Mann‐Kendall nonparametric trend test, and it was used to evaluate the existence of monotonic trends. The second was a nonstationary generalized extreme value analysis, and it was used to determine the strength of association between the precipitation extremes and globally averaged near-surface temperature. The outcomes are that statistically significant increasing trends can be detected at the global scale, with close to two-thirds of stations showing increases. Furthermore, there is a statistically significant association with globally averaged near-surface temperature,withthemedianintensityofextremeprecipitationchanginginproportionwithchangesinglobal mean temperature at a rate of between 5.9% and 7.7%K 21 , depending on the method of analysis. This ratio was robust irrespective of record length or time period considered and was not strongly biased by the uneven global coverage of precipitation data. Finally, there is a distinct meridional variation, with the greatest sensitivity occurring in the tropics and higher latitudes and the minima around 138S and 118N. The greatest uncertainty was near the equator because of the limited number of sufficiently long precipitation records, and there remains an urgent need to improve data collection in this region to better constrain future changes in tropical precipitation.

615 citations

01 Apr 2015
Abstract: In the last decade record-breaking rainfall events have occurred in many places around the world causing severe impacts to human society and the environment including agricultural losses and floodings. There is now medium confidence that human-induced greenhouse gases have contributed to changes in heavy precipitation events at the global scale. Here, we present the first analysis of record-breaking daily rainfall events using observational data. We show that over the last three decades the number of record-breaking events has significantly increased in the global mean. Globally, this increase has led to 12 % more record-breaking rainfall events over 1981–2010 compared to those expected in stationary time series. The number of record-breaking rainfall events peaked in 2010 with an estimated 26 % chance that a new rainfall record is due to long-term climate change. This increase in record-breaking rainfall is explained by a statistical model which accounts for the warming of air and associated increasing water holding capacity only. Our results suggest that whilst the number of rainfall record-breaking events can be related to natural multi-decadal variability over the period from 1901 to 1980, observed record-breaking rainfall events significantly increased afterwards consistent with rising temperatures.

181 citations

01 Dec 2006
TL;DR: In this article, the authors studied the characteristics of raindrop size distribution in seven tropical cyclones through impact-type disdrometer measurements at three different sites during the 2004-06 Atlantic hurricane seasons.
Abstract: Characteristics of the raindrop size distribution in seven tropical cyclones have been studied through impact-type disdrometer measurements at three different sites during the 2004–06 Atlantic hurricane seasons. One of the cyclones has been observed at two different sites. High concentrations of small and/or midsize drops were observed in the presence or absence of large drops. Even in the presence of large drops, the maximum drop diameter rarely exceeded 4 mm. These characteristics of raindrop size distribution were observed in all stages of tropical cyclones, unless the storm was in the extratropical stage where the tropical cyclone and a midlatitude frontal system had merged. The presence of relatively high concentrations of large drops in extratropical cyclones resembled the size distribution in continental thunderstorms. The integral rain parameters of drop concentration, liquid water content, and rain rate at fixed reflectivity were therefore lower in extratropical cyclones than in tropical cyclones. In tropical cyclones, at a disdrometercalculated reflectivity of 40 dBZ, the number concentration was 700 100 drops m 3 , while the liquid water content and rain rate were 0.90 0.05 g m 3 and 18.5 0.5 mm h 1 , respectively. The mean mass diameter, on the other hand, was 1.67 0.3 mm. The comparison of raindrop size distributions between Atlantic tropical cyclones and storms that occurred in the central tropical Pacific island of Roi-Namur revealed that the number density is slightly shifted toward smaller drops, resulting in higher-integral rain parameters and lower mean mass and maximum drop diameters at the latter site. Considering parameterization of the raindrop size distribution in tropical cyclones, characteristics of the normalized gamma distribution parameters were examined with respect to reflectivity. The mean mass diameter increased rapidly with reflectivity, while the normalized intercept parameter had an increasing trend with reflectivity. The shape parameter, on the other hand, decreased in a reflectivity range from 10 to 20 dBZ and remained steady at higher reflectivities. Considering the repeatability of the characteristics of the raindrop size distribution, a second impact disdrometer that was located 5.3 km away from the primary site in Wallops Island, Virginia, had similar size spectra in selected tropical cyclones.

122 citations

Journal ArticleDOI
TL;DR: In this paper, the characteristics of raindrop size distributions and vertical structures of rainfall during the Asian summer monsoon season in East China were studied using measurements from a ground-based two-dimensional video disdrometer (2DVD) and a vertically pointing Micro Rain Radar (MRR).
Abstract: The characteristics of raindrop size distributions (DSDs) and vertical structures of rainfall during the Asian summer monsoon season in East China are studied using measurements from a ground-based two-dimensional video disdrometer (2DVD) and a vertically pointing Micro Rain Radar (MRR). Based on rainfall intensity and vertical structure of radar reflectivity, the observed rainfall is classified into convective, stratiform, and shallow precipitation types. Among them, shallow precipitation has previously been ignored or treated as outliers due to limitations in traditional surface measurements. Using advanced instruments of 2DVD and MRR, the characteristics of shallow precipitation are quantified. Furthermore, summer rainfall in the study region is found to consist mainly of stratiform rain in terms of frequency of occurrence but is dominated by convective rain in terms of accumulated rainfall amount. Further separation of the summer season into time periods before, during, and after the Meiyu season reveals that intrasummer variation of DSDs is mainly due to changes in percentage occurrence of the three precipitation types, while the characteristics of each type remain largely unchanged throughout the summer. Overall, higher raindrop concentrations and smaller diameters are found compared to monsoon precipitation at other locations in Asia. Higher local aerosol concentration is speculated to be the cause. Finally, rainfall estimation relationships using polarimetric radar measurements are derived and discussed. These new relationships agree well with rain gauge measurements and are more accurate than traditional relations, especially at high and low rain rates.

116 citations