scispace - formally typeset
Search or ask a question
Author

Chunxiao Jiang

Bio: Chunxiao Jiang is an academic researcher from Tsinghua University. The author has contributed to research in topics: Computer science & Resource allocation. The author has an hindex of 47, co-authored 371 publications receiving 9294 citations. Previous affiliations of Chunxiao Jiang include University of Maryland, College Park & University of Sheffield.


Papers
More filters
Journal ArticleDOI
TL;DR: The goal is to assist the readers in refining the motivation, problem formulation, and methodology of powerful machine learning algorithms in the context of future networks in order to tap into hitherto unexplored applications and services.
Abstract: Next-generation wireless networks are expected to support extremely high data rates and radically new applications, which require a new wireless radio technology paradigm. The challenge is that of assisting the radio in intelligent adaptive learning and decision making, so that the diverse requirements of next-generation wireless networks can be satisfied. Machine learning is one of the most promising artificial intelligence tools, conceived to support smart radio terminals. Future smart 5G mobile terminals are expected to autonomously access the most meritorious spectral bands with the aid of sophisticated spectral efficiency learning and inference, in order to control the transmission power, while relying on energy efficiency learning/inference and simultaneously adjusting the transmission protocols with the aid of quality of service learning/inference. Hence we briefly review the rudimentary concepts of machine learning and propose their employment in the compelling applications of 5G networks, including cognitive radios, massive MIMOs, femto/small cells, heterogeneous networks, smart grid, energy harvesting, device-todevice communications, and so on. Our goal is to assist the readers in refining the motivation, problem formulation, and methodology of powerful machine learning algorithms in the context of future networks in order to tap into hitherto unexplored applications and services.

958 citations

Journal ArticleDOI
Lei Xu1, Chunxiao Jiang1, Jian Wang1, Jian Yuan1, Yong Ren1 
TL;DR: This paper identifies four different types of users involved in data mining applications, namely, data provider, data collector, data miner, and decision maker, and examines various approaches that can help to protect sensitive information.
Abstract: The growing popularity and development of data mining technologies bring serious threat to the security of individual,'s sensitive information. An emerging research topic in data mining, known as privacy-preserving data mining (PPDM), has been extensively studied in recent years. The basic idea of PPDM is to modify the data in such a way so as to perform data mining algorithms effectively without compromising the security of sensitive information contained in the data. Current studies of PPDM mainly focus on how to reduce the privacy risk brought by data mining operations, while in fact, unwanted disclosure of sensitive information may also happen in the process of data collecting, data publishing, and information (i.e., the data mining results) delivering. In this paper, we view the privacy issues related to data mining from a wider perspective and investigate various approaches that can help to protect sensitive information. In particular, we identify four different types of users involved in data mining applications, namely, data provider, data collector, data miner, and decision maker. For each type of user, we discuss his privacy concerns and the methods that can be adopted to protect sensitive information. We briefly introduce the basics of related research topics, review state-of-the-art approaches, and present some preliminary thoughts on future research directions. Besides exploring the privacy-preserving approaches for each type of user, we also review the game theoretical approaches, which are proposed for analyzing the interactions among different users in a data mining scenario, each of whom has his own valuation on the sensitive information. By differentiating the responsibilities of different users with respect to security of sensitive information, we would like to provide some useful insights into the study of PPDM.

528 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning and investigate their employment in the compelling applications of wireless networks, including heterogeneous networks, cognitive radios (CR), Internet of Things (IoT), machine to machine networks (M2M), and so on.
Abstract: Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of Things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.

413 citations

Journal ArticleDOI
TL;DR: The resource allocation problem in both the uplink and the downlink for two-tier networks comprising spectrum-sharing femtocells and macrocells is investigated and an iterative subchannel and power allocation algorithm considering heterogeneous services and cross-tier interference is proposed.
Abstract: Femtocells are being considered a promising technique to improve the capacity and coverage for indoor wireless users. However, the cross-tier interference in the spectrum-sharing deployment of femtocells can degrade the system performance seriously. The resource allocation problem in both the uplink and the downlink for two-tier networks comprising spectrum-sharing femtocells and macrocells is investigated. A resource allocation scheme for cochannel femtocells is proposed, aiming to maximize the capacity for both delay-sensitive users and delay-tolerant users subject to the delay-sensitive users' quality-of-service constraint and an interference constraint imposed by the macrocell. The subchannel and power allocation problem is modeled as a mixed-integer programming problem, and then, it is transformed into a convex optimization problem by relaxing subchannel sharing; finally, it is solved by the dual decomposition method. Subsequently, an iterative subchannel and power allocation algorithm considering heterogeneous services and cross-tier interference is proposed for the problem using the subgradient update. A practical low-complexity distributed subchannel and power allocation algorithm is developed to reduce the computational cost. The complexity of the proposed algorithms is analyzed, and the effectiveness of the proposed algorithms is verified by simulations.

388 citations

Journal ArticleDOI
TL;DR: An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point.
Abstract: Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave-based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem are modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and its effectiveness compared with existing methods is verified by simulations.

367 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations