scispace - formally typeset
Search or ask a question
Author

Chunyun Guan

Bio: Chunyun Guan is an academic researcher from Hunan Agricultural University. The author has contributed to research in topics: Gene & Nitrate reductase. The author has an hindex of 11, co-authored 23 publications receiving 1688 citations.

Papers
More filters
Journal ArticleDOI
Boulos Chalhoub1, Shengyi Liu2, Isobel A. P. Parkin3, Haibao Tang4, Haibao Tang5, Xiyin Wang6, Julien Chiquet1, Harry Belcram1, Chaobo Tong2, Birgit Samans7, Margot Correa8, Corinne Da Silva8, Jérémy Just1, Cyril Falentin9, Chu Shin Koh10, Isabelle Le Clainche1, Maria Bernard8, Pascal Bento8, Benjamin Noel8, Karine Labadie8, Adriana Alberti8, Mathieu Charles9, Dominique Arnaud1, Hui Guo6, Christian Daviaud, Salman Alamery11, Kamel Jabbari12, Kamel Jabbari1, Meixia Zhao13, Patrick P. Edger14, Houda Chelaifa1, David C. Tack15, Gilles Lassalle9, Imen Mestiri1, Nicolas Schnel9, Marie-Christine Le Paslier9, Guangyi Fan, Victor Renault16, Philippe E. Bayer11, Agnieszka A. Golicz11, Sahana Manoli11, Tae-Ho Lee6, Vinh Ha Dinh Thi1, Smahane Chalabi1, Qiong Hu2, Chuchuan Fan17, Reece Tollenaere11, Yunhai Lu1, Christophe Battail8, Jinxiong Shen17, Christine Sidebottom10, Xinfa Wang2, Aurélie Canaguier1, Aurélie Chauveau9, Aurélie Bérard9, G. Deniot9, Mei Guan18, Zhongsong Liu18, Fengming Sun, Yong Pyo Lim19, Eric Lyons20, Christopher D. Town4, Ian Bancroft21, Xiaowu Wang, Jinling Meng17, Jianxin Ma13, J. Chris Pires22, Graham J.W. King23, Dominique Brunel9, Régine Delourme9, Michel Renard9, Jean-Marc Aury8, Keith L. Adams15, Jacqueline Batley24, Jacqueline Batley11, Rod J. Snowdon7, Jörg Tost, David Edwards24, David Edwards11, Yongming Zhou17, Wei Hua2, Andrew G. Sharpe10, Andrew H. Paterson6, Chunyun Guan18, Patrick Wincker1, Patrick Wincker25, Patrick Wincker8 
22 Aug 2014-Science
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

1,743 citations

Journal ArticleDOI
TL;DR: The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11', and certain genetic differences were also detected in two morphotypes.
Abstract: Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (Ar ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with Ar , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia.

186 citations

Journal ArticleDOI
TL;DR: NH4+ toxicity is related to a nitrate-independent signaling function of NRT1.1 in Arabidopsis, characterized by enhanced NH4+ accumulation and altered NH4- metabolism, which stimulates ethylene synthesis, leading to plant senescence.
Abstract: A high concentration of ammonium (NH4+) as the sole source of nitrogen in the growth medium often is toxic to plants. The nitrate transporter NRT1.1 is involved in mediating the effects of NH4+ toxicity; however, the mechanism remains undefined. In this study, wild-type Arabidopsis (Arabidopsis thaliana Columbia-0 [Col-0]) and NRT1.1 mutants (chl1-1 and chl1-5) were grown hydroponically in NH4NO3 and (NH4)2SO4 media to assess the function of NRT1.1 in NH4+ stress responses. All the plants grew normally in medium containing mixed nitrogen sources, but Col-0 displayed more chlorosis and lower biomass and photosynthesis than the NRT1.1 mutants in (NH4)2SO4 medium. Grafting experiments between Col-0 and chl1-5 further confirmed that NH4+ toxicity is influenced by NRT1.1. In (NH4)2SO4 medium, NRT1.1 induced the expression of NH4+ transporters, increasing NH4+ uptake. Additionally, the activities of glutamine synthetase and glutamate synthetase in roots of Col-0 plants decreased and soluble sugar accumulated significantly, whereas pyruvate kinase-mediated glycolysis was not affected, all of which contributed to NH4+ accumulation. By contrast, the NRT1.1 mutants showed reduced NH4+ accumulation and enhanced NH4+ assimilation through glutamine synthetase, glutamate synthetase, and glutamate dehydrogenase. Moreover, the up-regulation of genes involved in ethylene synthesis and senescence in Col-0 plants treated with (NH4)2SO4 suggests that ethylene is involved in NH4+ toxicity responses. This study showed that NH4+ toxicity is related to a nitrate-independent signaling function of NRT1.1 in Arabidopsis, characterized by enhanced NH4+ accumulation and altered NH4+ metabolism, which stimulates ethylene synthesis, leading to plant senescence.

59 citations

Journal ArticleDOI
TL;DR: A multiomics approach encompassing morphophysiology, ionomic profiling, whole-genome resequencing, transcriptomics, and high-resolution metabolomics reveals that differences in cadmium resistance between two rapeseed cultivars is determined by subcellular reallocation.
Abstract: Oilseed rape (Brassica napus) has great potential for phytoremediation of cadmium (Cd)-polluted soils due to its large plant biomass production and strong metal accumulation. Enhanced plant Cd resistance (PCR) is a crucial prerequisite for phytoremediation through hyper-accumulation of excess Cd. However, the complexity of the allotetraploid genome of rapeseed hinders our understanding of PCR. To explore rapeseed Cd-resistance mechanisms, we examined two genotypes, 'ZS11' (Cd-resistant) and 'W10' (Cd-sensitive), that exhibit contrasting PCR while having similar tissue Cd concentrations, and characterized their different fingerprints in terms of plant morphophysiology (electron microscopy), ion abundance (inductively coupled plasma mass spectrometry), DNA variation (whole-genome resequencing), transcriptomics (high-throughput mRNA sequencing), and metabolomics (ultra-high performance liquid chromatography-mass spectrometry). Fine isolation of cell components combined with ionomics revealed that more Cd accumulated in the shoot vacuoles and root pectins of the resistant genotype than in the sensitive one. Genome and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in pectin modification, ion binding, and compartmentalization. Transcriptomics-assisted gene co-expression networks characterized BnaCn.ABCC3 and BnaA8.PME3 as the central members involved in the determination of rapeseed PCR. High-resolution metabolic profiles revealed greater accumulation of shoot Cd chelates, and stronger biosynthesis and higher demethylation of root pectins in the resistant genotype than in the sensitive one. Our comprehensive examination using a multiomics approach has greatly improved our understanding of the role of subcellular reallocation of Cd in the determination of PCR.

54 citations

Journal ArticleDOI
TL;DR: Improved understanding is improved of how B participates in chelation of Cd onto cell walls and in maintaining cell wall integrity, thereby improving Cd toxicity resistance in rapeseed roots.

51 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2009
TL;DR: In this article, the effects of cross-fertilisation and self fertilization on the production of seeds are discussed. But the main difference between cross-and self-flowered plants is the height and weights of the crossed and self-flowering plants.
Abstract: 1. Introductory remarks 2. Convolvulacaea 2. Scrophulariaceae, Gesneriaceae, Labiatae, etc. 4. Cruciferae, Papaveraceae, Resedaceae, etc. 5. Geraniaceae, Leguminosae, Onagraceae, etc. 6. Solanaceae, Primulaceae, Polygoneae, etc. 7. Summary of the heights and weights of the crossed and self-fertilised plants 8. Difference between crossed and self-fertilised plants in constitutional vigour and in other respects 9. The effects of cross-fertilisation and self-fertilisation on the production of seeds 10. Means of fertilisation 11. The habits of insects in relation to the fertilisation of flowers 12. General results Index.

1,224 citations

Journal ArticleDOI
TL;DR: Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenomes, suggesting asymmetric evolution.
Abstract: Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.

1,221 citations

Journal ArticleDOI
TL;DR: This review surveys the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.
Abstract: Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.

856 citations

Journal ArticleDOI
TL;DR: A draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map is produced for G. hirsutum, revealing conserved gene order and concerted evolution of different regulatory mechanisms for Cellulose synthase and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 may be important for enhanced fiber production.
Abstract: Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6%∼96.7% of the AtDt genome, are anchored and oriented to 26 pseudochromosomes. Comparison of this G. hirsutum AtDt genome with the already sequenced diploid Gossypium arboreum (AA) and Gossypium raimondii (DD) genomes revealed conserved gene order. Repeated sequences account for 67.2% of the AtDt genome, and transposable elements (TEs) originating from Dt seem more active than from At. Reduction in the AtDt genome size occurred after allopolyploidization. The A or At genome may have undergone positive selection for fiber traits. Concerted evolution of different regulatory mechanisms for Cellulose synthase (CesA) and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 (ACO1,3) may be important for enhanced fiber production in G. hirsutum.

836 citations