scispace - formally typeset
Search or ask a question
Author

Churl Kyoung Lee

Bio: Churl Kyoung Lee is an academic researcher. The author has contributed to research in topics: Specific surface area & Nitric acid. The author has an hindex of 1, co-authored 1 publications receiving 257 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a recycling process involving mechanical, thermal, hydrometallurgical and sol-gel steps has been applied to recover cobalt and lithium from spent lithium-ion batteries and to synthesize LiCoO2 from leach liquor as cathodic active materials.

326 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A systematic overview of rechargeable battery sustainability, with a particular focus on electric vehicles, and a 4H strategy for battery recycling with the aims of high efficiency, high economic return, high environmental benefit, and high safety are proposed.
Abstract: Tremendous efforts are being made to develop electrode materials, electrolytes, and separators for energy storage devices to meet the needs of emerging technologies such as electric vehicles, decarbonized electricity, and electrochemical energy storage. However, the sustainability concerns of lithium-ion batteries (LIBs) and next-generation rechargeable batteries have received little attention. Recycling plays an important role in the overall sustainability of future batteries and is affected by battery attributes including environmental hazards and the value of their constituent resources. Therefore, recycling should be considered when developing battery systems. Herein, we provide a systematic overview of rechargeable battery sustainability. With a particular focus on electric vehicles, we analyze the market competitiveness of batteries in terms of economy, environment, and policy. Considering the large volumes of batteries soon to be retired, we comprehensively evaluate battery utilization and recycling from the perspectives of economic feasibility, environmental impact, technology, and safety. Battery sustainability is discussed with respect to life-cycle assessment and analyzed from the perspectives of strategic resources and economic demand. Finally, we propose a 4H strategy for battery recycling with the aims of high efficiency, high economic return, high environmental benefit, and high safety. New challenges and future prospects for battery sustainability are also highlighted.

726 citations

Journal ArticleDOI
TL;DR: In this article, the current status of the recycling technologies of spent lithium-ion secondary batteries is reviewed, and the problems and prospect of their studies of their recycling technologies have been put forward.

668 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of spent lithium-ion battery recycling is summarized in light of the whole recycling process, especially focusing on the hydrometallurgy, which is used to extract metals or separate impurities from a specific waste stream so that the recycled materials or compounds can be further prepared by incorporating principles of materials engineering.
Abstract: Recycling of spent lithium-ion batteries (LIBs) has attracted significant attention in recent years due to the increasing demand for corresponding critical metals/materials and growing pressure on the environmental impact of solid waste disposal. A range of investigations have been carried out for recycling spent LIBs to obtain either battery materials or individual compounds. For the effective recovery of materials to be enhanced, physical pretreatment is usually applied to obtain different streams of waste materials ensuring efficient separation for further processing. Subsequently, a metallurgical process is used to extract metals or separate impurities from a specific waste stream so that the recycled materials or compounds can be further prepared by incorporating principles of materials engineering. In this review, the current status of spent LIB recycling is summarized in light of the whole recycling process, especially focusing on the hydrometallurgy. In addition to understanding different hydromet...

634 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the current status of the recycling processes of spent lithium ion batteries, introduce the structure and components of the batteries, and summarize all available single contacts in batch mode operation, including pretreatment, secondary treatment, and deep recovery.
Abstract: Lithium-ion battery (LIB) applications in consumer electronics and electric vehicles are rapidly growing, resulting in boosting resources demand, including cobalt and lithium. So recycling of batteries will be a necessity, not only to decline the consumption of energy, but also to relieve the shortage of rare resources and eliminate the pollution of hazardous components, toward sustainable industries related to consumer electronics and electric vehicles. The authors review the current status of the recycling processes of spent LIBs, introduce the structure and components of the batteries, and summarize all available single contacts in batch mode operation, including pretreatment, secondary treatment, and deep recovery. Additionally, many problems and prospect of the current recycling processes will be presented and analyzed. It is hoped that this effort would stimulate further interest in spent LIBs recycling and in the appreciation of its benefits.

610 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the resources of lithium and status of different processes/technologies in vogue or being developed for extracting lithium and associated metals from both primary and secondary resources are summarized.

550 citations