scispace - formally typeset
Search or ask a question
Author

Cindy M. Korver

Other affiliations: Academic Medical Center
Bio: Cindy M. Korver is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Y chromosome & Azoospermia factor. The author has an hindex of 20, co-authored 25 publications receiving 2243 citations. Previous affiliations of Cindy M. Korver include Academic Medical Center.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that the existence of this deletion as a polymorphism reflects a balance between haploid selection, which culls gr/gr-deleted Y chromosomes from the population, and homologous recombination, which continues to generate newgr/gr deletions.
Abstract: Many human Y-chromosomal deletions are thought to severely impair reproductive fitness, which precludes their transmission to the next generation and thus ensures their rarity in the population. Here we report a 1.6-Mb deletion that persists over generations and is sufficiently common to be considered a polymorphism. We hypothesized that this deletion might affect spermatogenesis because it removes almost half of the Y chromosome's AZFc region, a gene-rich segment that is critical for sperm production. An association study established that this deletion, called gr/gr, is a significant risk factor for spermatogenic failure. The gr/gr deletion has far lower penetrance with respect to spermatogenic failure than previously characterized Y-chromosomal deletions; it is often transmitted from father to son. By studying the distribution of gr/gr-deleted chromosomes across the branches of the Y chromosome's genealogical tree, we determined that this deletion arose independently at least 14 times in human history. We suggest that the existence of this deletion as a polymorphism reflects a balance between haploid selection, which culls gr/gr-deleted Y chromosomes from the population, and homologous recombination, which continues to generate new gr/gr deletions.

428 citations

Journal ArticleDOI
18 Nov 2009-JAMA
Abstract: Context Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. Objective To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. Design, Setting, and Participants Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin–coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. Main Outcome Measures Propagation of spermatogonial stem cells over time. Results Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and increased 18 450-fold within 64 days in the germline stem cell subculture. Conclusion Long-term culture and propagation of human spermatogonial stem cells in vitro is achievable.

349 citations

Journal ArticleDOI
TL;DR: High mutation rates have driven extensive structural polymorphism among human Y chromosomes and limited variation in the copy number of Y-linked genes is found, which raises the possibility of selective constraints.
Abstract: Although much structural polymorphism in the human genome has been catalogued, the kinetics of underlying change remain largely unexplored. Because human Y chromosomes are clonally inherited, it has been possible to capture their detailed relationships in a robust, worldwide genealogical tree. Examination of structural variation across this tree opens avenues for investigating rates of underlying mutations. We selected one Y chromosome from each of 47 branches of this tree and searched for large-scale variation. Four chromosomal regions showed extensive variation resulting from numerous large-scale mutations. Within the tree encompassed by the studied chromosomes, the distal-Yq heterochromatin changed length > or = 12 times, the TSPY gene array changed length > or = 23 times, the 3.6-Mb IR3/IR3 region changed orientation > or = 12 times and the AZFc region was rearranged > or = 20 times. After determining the total time spanned by all branches of this tree (approximately 1.3 million years or 52,000 generations), we converted these mutation counts to lower bounds on rates: > or = 2.3 x 10(-4), > or = 4.4 x 10(-4), > or = 2.3 x 10(-4) and > or = 3.8 x 10(-4) large-scale mutations per father-to-son Y transmission, respectively. Thus, high mutation rates have driven extensive structural polymorphism among human Y chromosomes. At the same time, we found limited variation in the copy number of Y-linked genes, which raises the possibility of selective constraints.

260 citations

Journal ArticleDOI
01 Jun 2004-Genomics
TL;DR: The present findings suggest either that the b2/b3 deletion has at most a modest effect on fitness or that, within branch N, its effect has been counterbalanced by another genetic, possibly Y-linked, factor.

211 citations

Journal ArticleDOI
04 Sep 2009-Cell
TL;DR: In this article, it was shown that cross-over recombinations occur at nearly all Y-linked palindromes, exposing an Achilles' heel in the mechanism that preserves palindrome-borne genes.

187 citations


Cited by
More filters
Journal ArticleDOI
23 Nov 2006-Nature
TL;DR: A first-generation CNV map of the human genome is constructed through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia, underscoring the importance of CNV in genetic diversity and evolution and the utility of this resource for genetic disease studies.
Abstract: Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.

4,275 citations

Journal ArticleDOI
TL;DR: Rapidly accumulating evidence indicates that structural variants can comprise millions of nucleotides of heterogeneity within every genome, and are likely to make an important contribution to human diversity and disease susceptibility.
Abstract: The first wave of information from the analysis of the human genome revealed SNPs to be the main source of genetic and phenotypic human variation. However, the advent of genome-scanning technologies has now uncovered an unexpectedly large extent of what we term 'structural variation' in the human genome. This comprises microscopic and, more commonly, submicroscopic variants, which include deletions, duplications and large-scale copy-number variants - collectively termed copy-number variants or copy-number polymorphisms - as well as insertions, inversions and translocations. Rapidly accumulating evidence indicates that structural variants can comprise millions of nucleotides of heterogeneity within every genome, and are likely to make an important contribution to human diversity and disease susceptibility.

1,804 citations

Journal ArticleDOI
TL;DR: Current efforts are directed toward a more comprehensive cataloging and characterization of CNVs that will provide the basis for determining how genomic diversity impacts biological function, evolution, and common human diseases.
Abstract: DNA copy number variation has long been associated with specific chromosomal rearrangements and genomic disorders, but its ubiquity in mammalian genomes was not fully realized until recently. Although our understanding of the extent of this variation is still developing, it seems likely that, at least in humans, copy number variants (CNVs) account for a substantial amount of genetic variation. Since many CNVs include genes that result in differential levels of gene expression, CNVs may account for a significant proportion of normal phenotypic variation. Current efforts are directed toward a more comprehensive cataloging and characterization of CNVs that will provide the basis for determining how genomic diversity impacts biological function, evolution, and common human diseases.

855 citations

Journal ArticleDOI
TL;DR: The past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility, but translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples.
Abstract: Reproduction is required for the survival of all mammalian species, and thousands of essential 'sex' genes are conserved through evolution. Basic research helps to define these genes and the mechanisms responsible for the development, function and regulation of the male and female reproductive systems. However, many infertile couples continue to be labeled with the diagnosis of idiopathic infertility or given descriptive diagnoses that do not provide a cause for their defect. For other individuals with a known etiology, effective cures are lacking, although their infertility is often bypassed with assisted reproductive technologies (ART), some accompanied by safety or ethical concerns. Certainly, progress in the field of reproduction has been realized in the twenty-first century with advances in the understanding of the regulation of fertility, with the production of over 400 mutant mouse models with a reproductive phenotype and with the promise of regenerative gonadal stem cells. Indeed, the past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility. Translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples. Additionally, new approaches to contraception remain elusive. Nevertheless, the basic and clinical advances in the understanding of the molecular controls of reproduction are impressive and will ultimately improve patient care.

840 citations

Journal ArticleDOI
TL;DR: Major changes in the topology of the parsimony tree are described and names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002 are provided.
Abstract: Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree.

831 citations