scispace - formally typeset
Search or ask a question
Author

Cinzia Casiraghi

Bio: Cinzia Casiraghi is an academic researcher from University of Manchester. The author has contributed to research in topics: Graphene & Raman spectroscopy. The author has an hindex of 53, co-authored 129 publications receiving 29830 citations. Previous affiliations of Cinzia Casiraghi include Free University of Berlin & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, high-performance MoS2 field effect transistors on paper fabricated with a channel-array approach, combining the advantages of two large-area techniques: chemical vapor deposition and inkjet-printing.
Abstract: Paper is the ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems, which, combined with two-dimensional materials, could be exploited in many Internet-of-Things applications, ranging from wearable electronics to smart packaging. Here we report high-performance MoS2 field-effect transistors on paper fabricated with a channel-array approach, combining the advantages of two large-area techniques: chemical vapor deposition and inkjet-printing.The first allows the pre-deposition of a pattern of MoS2; the second, the printing of dielectric layers, contacts, and connections to complete transistors and circuits fabrication. Average ION/IOFF of 8 x 10^3 (up to 5 x 10^4) and mobility of 5.5 cm2 V-1 s-1 (up to 26 cm2 V-1 s-1) are obtained. Fully functional integrated circuits of digital and analog building blocks, such as logic gates and current mirrors, are demonstrated, highlighting the potential of this approach for ubiquitous electronics on paper.

53 citations

Journal ArticleDOI
TL;DR: In this article, a simple fabrication technique was proposed to produce pressurized and stable graphene membranes that can support differential pressures up to 14 bar, corresponding to a reversible strain up to ∼2%.
Abstract: Raman spectroscopy is an ideal tool for the characterization of strained graphene. Biaxial strain, in particular, allows for more reliable calculation of the Gruneisen parameters than uniaxial strain. However, the application of biaxial strain is rather difficult to achieve experimentally, so all previous studies reported on graphene subjected to relatively small biaxial strains (0.1%–1%), in contrast to uniaxial strain above 10%. Here, we report a simple fabrication technique to produce pressurized and stable graphene membranes that can support differential pressures up to 14 bar, corresponding to a reversible strain up to ∼2%. We find that the Gruneisen parameters remain constant even for the largest strains achieved, in agreement with the theoretical predictions. However, for strains above 1%, a distinctive broadening of both the G and 2D peaks was observed for biaxial strain. We attribute this to the nanoscale variations of strain in the membrane within an area comparable with the laser spot size.

51 citations

Journal ArticleDOI
25 Feb 2013-Small
TL;DR: An experimental study on the interaction between the top and bottom layer of a chemically functionalized graphene bilayer by mild oxygen plasma is reported, opening the possibility to use plasma treatment not only for etching and patterning of graphene, but also to make heterostructures for sensors and transistors and new graphene-derivatives materials.
Abstract: An experimental study on the interaction between the top and bottom layer of a chemically functionalized graphene bilayer by mild oxygen plasma is reported. Structural, chemical, and electrical properties are monitored using Raman spectroscopy, transport measurements, conductive atomic force microscopy and X-ray photoelectron spectroscopy. Single- and double-sided chemical functionalization are found to give very different results: single-sided modified bilayers show relatively high mobility (200–600 cm2 V−1 s−1 at room temperature) and a stable structure with a limited amount of defects, even after long plasma treatment (>60 s). This is attributed to preferential modification and limited coverage of the top layer during plasma exposure, while the bottom layer remains almost unperturbed. This could eventually lead to decoupling between top and bottom layers. Double-sided chemical functionalization leads to a structure containing a high concentration of defects, very similar to graphene oxide. This opens the possibility to use plasma treatment not only for etching and patterning of graphene, but also to make heterostructures (through single-sided modification of bilayers) for sensors and transistors and new graphene-derivatives materials (through double-sided modification).

50 citations

Journal ArticleDOI
TL;DR: In this article, an analytical and functional characterisation of ultra-thin carbon nitride and pure carbon films produced by magnetron sputtering and filtered high current vacuum arc has been presented, where the main focus is the effect of nitrogen composition and decreasing film thickness on the relevant mechanical and tribological properties.

48 citations

Journal ArticleDOI
13 Sep 2011-ACS Nano
TL;DR: Large-yield production of graphene flakes on glass by anodic bonding and it is shown that it is possible to easily transfer the flakes by the wedging technique, and the transfer on silicon does not damage graphene and lowers the doping.
Abstract: We report large-yield production of graphene flakes on glass by anodic bonding. Under optimum conditions, we counted several tens of flakes with lateral size around 20-30 mu m and a few tens of flakes with larger size. About 60-70% of the flakes have a negligible D peak. We show that it is possible to easily transfer the flakes by the wedging technique. The transfer on silicon does not damage graphene and lowers the doping. The charge mobility of the transferred flakes on silicon is on the order of 6000 cm(2)/V s (at a carrier concentration of 10(12) cm(-2)), which is typical for devices prepared on this substrate with exfoliated graphene.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations