scispace - formally typeset
Search or ask a question
Author

Claes-Göran Granqvist

Bio: Claes-Göran Granqvist is an academic researcher from Uppsala University. The author has contributed to research in topics: Electrochromism & Thin film. The author has an hindex of 73, co-authored 535 publications receiving 31523 citations. Previous affiliations of Claes-Göran Granqvist include Chalmers University of Technology & Texas A&M University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, preliminary data taken on samples with electrochromic layers based on tungsten oxide, WO{sub 3}, and nickel oxide, NiO, and an intermediate solid electrolyte of poly(ethylene oxide) doped with lithium perchlorate, where 8 signifies the number of oxygen heteroatoms per lithium ion.
Abstract: Electrochromic materials are characterized by reversible but persistent changes of the optical properties when subjected to suitable electrochemical reactions. Electrochromism can be utilized in windows, most conveniently by exploiting all-solid-state multilayer coating backed by glass. The multilayer coating should comprise the following sequence of layers: a transparent and electrically conducting base layer, an electrochromic layer, and electrolyte, a conterelectrode, and a transparent conducting top layer. For window applications, the electrolyte should be transparent, and the conterelectrode must be either optically passive (colorless irrespective of its ionic content) or electrochromic in a sense that is complementary to the electrochromism of the electrochromic layer. The latter condition implies that if the electrochromic layer is cathodic (anodic), the counterelectrode must be anodic (cathodic). This paper reports preliminary data taken on samples with electrochromic layers based on tungsten oxide, WO{sub 3}, and nickel oxide, NiO, and an intermediate solid electrolyte of poly(ethylene oxide) doped with lithium perchlorate, (PEO){sub 8}LiClO{sub 4}, where 8 signifies the number of oxygen heteroatoms per lithium ion.

74 citations

Journal ArticleDOI
TL;DR: In this paper, an explorative study was performed on sputter-deposited thermochromic (TC) VO 2 films exposed to heat treatment under dry and humid conditions.

74 citations

Journal ArticleDOI
TL;DR: Transparent and heat-reflecting indium tin oxide films were prepared by electron beam evaporation of In 2 O 3  9mol%SnO 2 in an oxygen atmosphere of about 5×10 −4 Torr as discussed by the authors.

74 citations

Journal ArticleDOI
TL;DR: The KLJN system is briefly surveyed here with discussions about the essential questions such as perfect and imperfect security characteristics of the key distribution, and how these two types of securities can be unconditional (or information theoretical).
Abstract: There is an ongoing debate about the fundamental security of existing quantum key exchange schemes. This debate indicates not only that there is a problem with security but also that the meanings of perfect, imperfect, conditional and unconditional (information theoretic) security in physically secure key exchange schemes are often misunderstood. It has been shown recently that the use of two pairs of resistors with enhanced Johnson-noise and a Kirchhoff-loop - i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol - for secure key distribution leads to information theoretic security levels superior to those of today's quantum key distribution. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. The KLJN system is briefly surveyed here with discussions about the essential questions such as (i) perfect and imperfect security characteristics of the key distribution, and (ii) how these two types of securities can be unconditional (or information theoretical).

74 citations

Journal ArticleDOI
TL;DR: In this paper, a study of spattered Nitrogen-doped Titanium Dioxide thin film in aqueous electrolyte was conducted in order to study the properties of the thin film.

73 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations

Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

5,309 citations