scispace - formally typeset
Search or ask a question
Author

Claes-Göran Granqvist

Bio: Claes-Göran Granqvist is an academic researcher from Uppsala University. The author has contributed to research in topics: Electrochromism & Thin film. The author has an hindex of 73, co-authored 535 publications receiving 31523 citations. Previous affiliations of Claes-Göran Granqvist include Chalmers University of Technology & Texas A&M University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, thin V205 films were converted to V02 by heating in vacuo and the transformation was associated with a delay time which obeys an Arrhenius relation with an activation energy given by the bandgap of V2O5.
Abstract: Thin V205 films were converted to V02 by heating in vacuo. The transformation is associated with a delay time which obeys an Arrhenius relation with an activation energy given by the bandgap of V2O5.

10 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the quantum Johnson noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics.
Abstract: The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen–Welton formula (fluctuation–dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson–Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi–Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations

Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

5,309 citations