scispace - formally typeset
Search or ask a question
Author

Claes-Göran Granqvist

Bio: Claes-Göran Granqvist is an academic researcher from Uppsala University. The author has contributed to research in topics: Electrochromism & Thin film. The author has an hindex of 73, co-authored 535 publications receiving 31523 citations. Previous affiliations of Claes-Göran Granqvist include Chalmers University of Technology & Texas A&M University.


Papers
More filters
Posted Content
TL;DR: The KLJN protocol as discussed by the authors is based on the statistical-physics-based Kirchhoff-law-Johnson-noise (KLJN) key exchange.
Abstract: The statistical-physics-based Kirchhoff-law-Johnson-noise (KLJN) key exchange offers a new and simple unclonable system for credit/debit card chip authentication and payment. The key exchange, the authentication and the communication are unconditionally secure so that neither mathematics- nor statistics-based attacks are able to crack the scheme. The ohmic connection and the short wiring lengths between the chips in the card and the terminal constitute an ideal setting for the KLJN protocol, and even its simplest versions offer unprecedented security and privacy for credit/debit card chips and applications of physical unclonable functions.

1 citations

Journal ArticleDOI
TL;DR: In this paper, the integrator-and-fire model with white noise in the charging ion current was analyzed in the case of a single neuron and showed that it can produce significant lognormal features in its firing statistics.
Abstract: Even a single neuron may be able to produce significant lognormal features in its firing statistics due to noise in the charging ion current. A mathematical scheme introduced in advanced nanotechnology is relevant for the analysis of this mechanism in the simplest case, the integrate-and-fire model with white noise in the charging ion current.

1 citations

Proceedings ArticleDOI
TL;DR: In this article, a short survey on fluctuationenhanced gas sensing is presented, addressing the problem of linear response, information channel capacity, missed alarms and false alarms, and compared with classical sensing.
Abstract: We present a short survey on fluctuation-enhanced gas sensing. We compare some of its main characteristics with those of classical sensing. We address the problem of linear response, information channel capacity, missed alarms and false alarms.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations

Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

5,309 citations