scispace - formally typeset
Search or ask a question
Author

Claire Detrain

Bio: Claire Detrain is an academic researcher from Université libre de Bruxelles. The author has contributed to research in topics: Foraging & Lasius. The author has an hindex of 39, co-authored 156 publications receiving 5644 citations. Previous affiliations of Claire Detrain include University of Liège & Free University of Brussels.


Papers
More filters
Proceedings Article
14 Feb 1991
TL;DR: A distributed sorting algorithm, inspired by how ant colonies sort their brood, is presented for use by robot teams, offering the advantages of simplicity, flexibility and robustness.
Abstract: A distributed sorting algorithm, inspired by how ant colonies sort their brood is presented for use by robot teams The robots move randomly, do not communicate have no hierarchical organisation, have no global representation can only perceive objects just in front of them, but can distinguish between objects of two or more types with a certain degree of error The probability that they pick up or put down an object is modulated as a function of how many of the same objects they have met in the recent past This generates a positive feed-back that is sufficient to coordinate the robots' activity, resulting in their sorting the objects into common clusters While less efficient than a hierarchically controlled sorting, this decentralised organisation offers the advantages of simplicity, flexibility and robustness

971 citations

Journal ArticleDOI
16 Nov 2007-Science
TL;DR: Collective decision-making by mixed groups of cockroaches and socially integrated autonomous robots, leading to shared shelter selection is shown, demonstrating the possibility of using intelligent autonomous devices to study and control self-organized behavioral patterns in group-living animals.
Abstract: Collective behavior based on self-organization has been shown in group-living animals from insects to vertebrates. These findings have stimulated engineers to investigate approaches for the coordination of autonomous multirobot systems based on self-organization. In this experimental study, we show collective decision-making by mixed groups of cockroaches and socially integrated autonomous robots, leading to shared shelter selection. Individuals, natural or artificial, are perceived as equivalent, and the collective decision emerges from nonlinear feedbacks based on local interactions. Even when in the minority, robots can modulate the collective decision-making process and produce a global pattern not observed in their absence. These results demonstrate the possibility of using intelligent autonomous devices to study and control self-organized behavioral patterns in group-living animals.

489 citations

Book
01 Sep 1999
TL;DR: In this article, the authors studied the role and control of behavioral thresholds in the regulation of response thresholds and division of labor in insect colonies and found that response thresholds were critical for the success of ant foraging.
Abstract: 1 Group size and information flow inside the colony.- Group size, productivity, and information flow in social wasps.- Task partitioning in foraging: general principles, efficiency and information reliability of queueing delays.- Interaction patterns and task allocation in ant colonies.- Information flow during social feeding in ant societies.- Models of information flow in ant foraging: the benefits of both attractive and repulsive signals.- Information flow in the social domain: how individuals decide what to do next.- 2 Role and control of behavioral thresholds.- Response thresholds and division of labor in insect colonies.- Role and variability of response thresholds in the regulation of division of labor in insect societies.- Social control of division of labor in honey bee colonies.- Genetic, developmental and environmental determinants of honey bee foraging behavior.- Behavioral threshold variability: costs and benefits in insect societies.- 3 The individual at the core of information management.- Individuality and colonial identity in ants: the emergence of the social representation concept.- Key individuals and the organisation of labor in ants.- Temporal information in social insects.- The individual at the core of information management.- 4 Amplification of information and emergence of collective patterns.- Activity cycles in ant colonies: worker interactions and decentralized control.- The mechanisms and rules of coordinated building in social insects.- Decision-making in foraging by social insects.- The mystery of swarming honeybees: from individual behaviors to collective decisions.- Collective behavior in social caterpillars.- Self-organization or individual complexity: a false dilemma or a true complementarity?.

358 citations

Journal ArticleDOI
TL;DR: This experimental and theoretical study of shelter selection by cockroach groups demonstrates that choices can emerge through nonlinear interaction dynamics between equal individuals without perfect knowledge or leadership.
Abstract: Group-living animals are often faced with choosing between one or more alternative resource sites. A central question in such collective decision making includes determining which individuals induce the decision and when. This experimental and theoretical study of shelter selection by cockroach groups demonstrates that choices can emerge through nonlinear interaction dynamics between equal individuals without perfect knowledge or leadership. We identify a simple mechanism whereby a decision is taken on the move with limited information and signaling and without comparison of available opportunities. This mechanism leads to optimal mean benefit for group individuals. Our model points to a generic self-organized collective decision-making process independent of animal species.

240 citations

Journal ArticleDOI
TL;DR: It is shown that ant societies display some properties which are usually considered in physico-chemical systems, as typical signatures of self-organization, and details the key role played by feed-back loops, fluctuations, number of interacting units and sensitivity to environmental factors in the emergence of a structured collective behaviour.

229 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Book
John R. Koza1
01 Jan 1992
TL;DR: This book discusses the evolution of architecture, primitive functions, terminals, sufficiency, and closure, and the role of representation and the lens effect in genetic programming.
Abstract: Background on genetic algorithms, LISP, and genetic programming hierarchical problem-solving introduction to automatically-defined functions - the two-boxes problem problems that straddle the breakeven point for computational effort Boolean parity functions determining the architecture of the program the lawnmower problem the bumblebee problem the increasing benefits of ADFs as problems are scaled up finding an impulse response function artificial ant on the San Mateo trail obstacle-avoiding robot the minesweeper problem automatic discovery of detectors for letter recognition flushes and four-of-a-kinds in a pinochle deck introduction to biochemistry and molecular biology prediction of transmembrane domains in proteins prediction of omega loops in proteins lookahead version of the transmembrane problem evolutionary selection of the architecture of the program evolution of primitives and sufficiency evolutionary selection of terminals evolution of closure simultaneous evolution of architecture, primitive functions, terminals, sufficiency, and closure the role of representation and the lens effect Appendices: list of special symbols list of special functions list of type fonts default parameters computer implementation annotated bibliography of genetic programming electronic mailing list and public repository

13,487 citations

Book
01 Jan 2004
TL;DR: Ant colony optimization (ACO) is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals as discussed by the authors In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization.
Abstract: Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony Ant colony optimization exploits a similar mechanism for solving optimization problems From the early nineties, when the first ant colony optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO The goal of this article is to introduce ant colony optimization and to survey its most notable applications

6,861 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Journal ArticleDOI
TL;DR: The context for socially interactive robots is discussed, emphasizing the relationship to other research fields and the different forms of “social robots”, and a taxonomy of design methods and system components used to build socially interactive Robots is presented.

2,869 citations