scispace - formally typeset
Search or ask a question
Author

Claire J. Tomlin

Other affiliations: Stanford University, Google, University of California  ...read more
Bio: Claire J. Tomlin is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Hybrid system & Reachability. The author has an hindex of 72, co-authored 605 publications receiving 23572 citations. Previous affiliations of Claire J. Tomlin include Stanford University & Google.


Papers
More filters
Journal ArticleDOI
TL;DR: An algorithm for computing the set of reachable states of a continuous dynamic game based on a proof that the reachable set is the zero sublevel set of the viscosity solution of a particular time-dependent Hamilton-Jacobi-Isaacs partial differential equation.
Abstract: We describe and implement an algorithm for computing the set of reachable states of a continuous dynamic game. The algorithm is based on a proof that the reachable set is the zero sublevel set of the viscosity solution of a particular time-dependent Hamilton-Jacobi-Isaacs partial differential equation. While alternative techniques for computing the reachable set have been proposed, the differential game formulation allows treatment of nonlinear systems with inputs and uncertain parameters. Because the time-dependent equation's solution is continuous and defined throughout the state space, methods from the level set literature can be used to generate more accurate approximations than are possible for formulations with potentially discontinuous solutions. A numerical implementation of our formulation is described and has been released on the web. Its correctness is verified through a two vehicle, three dimensional collision avoidance example for which an analytic solution is available.

1,107 citations

Proceedings ArticleDOI
20 Aug 2007
TL;DR: In this paper, a theoretical development is presented, and validated through both thrust test stand measurements and vehicle flight tests using the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC) quadrotor helicopter.
Abstract: Quadrotor helicopters are emerging as a popular platform for unmanned aerial vehicle (UAV) research, due to the simplicity of their construction and maintenance, their ability to hover, and their vertical take o and landing (VTOL) capability. Current designs have often considered only nominal operating conditions for vehicle control design. This work seeks to address issues that arise when deviating significantly from the hover flight regime. Aided by well established research for helicopter flight control, three separate aerodynamic eects are investigated as they pertain to quadrotor flight, due to vehicular velocity, angle of attack, and airframe design. They cause moments that aect attitude control, and thrust variation that aects altitude control. Where possible, a theoretical development is first presented, and is then validated through both thrust test stand measurements and vehicle flight tests using the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC) quadrotor helicopter. The results enabled improved controller performance.

1,074 citations

Journal ArticleDOI
TL;DR: The method models the aircraft and the manoeuvre as a hybrid control system and calculates the maximal set of safe initial conditions for each aircraft so that separation is assured in the presence of uncertainties in the actions of the other aircraft.
Abstract: Air traffic management (ATM) of the future allows for the possibility of free flight, in which aircraft choose their own optimal routes, altitudes, and velocities. The safe resolution of trajectory conflicts between aircraft is necessary to the success of such a distributed control system. In this paper, we present a method to synthesize provably safe conflict resolution manoeuvres. The method models the aircraft and the manoeuvre as a hybrid control system and calculates the maximal set of safe initial conditions for each aircraft so that separation is assured in the presence of uncertainties in the actions of the other aircraft. Examples of manoeuvres using both speed and heading changes are worked out in detail.

957 citations

Journal ArticleDOI
TL;DR: This work presents a technique, based on the principles of optimal control, for determining the class of least restrictive controllers that satisfies the most important objective and shows how the proposed synthesis technique simplifies to well-known results from supervisory control and pursuit evasion games when restricted to purely discrete and purely continuous systems respectively.

678 citations

Journal ArticleDOI
01 Jul 2000
TL;DR: This work presents a method to design controllers for safety specifications in hybrid systems, using analysis based on optimal control and game theory for automata and continuous dynamical systems to derive Hamilton-Jacobi equations whose solutions describe the boundaries of reachable sets.
Abstract: We present a method to design controllers for safety specifications in hybrid systems. The hybrid system combines discrete event dynamics with nonlinear continuous dynamics: the discrete event dynamics model linguistic and qualitative information and naturally accommodate mode switching logic, and the continuous dynamics model the physical processes themselves, such as the continuous response of an aircraft to the forces of aileron and throttle. Input variables model both continuous and discrete control and disturbance parameters. We translate safety specifications into restrictions on the system's reachable sets of states. Then, using analysis based on optimal control and game theory for automata and continuous dynamical systems, we derive Hamilton-Jacobi equations whose solutions describe the boundaries of reachable sets. These equations are the heart of our general controller synthesis technique for hybrid systems, in which we calculate feedback control laws for the continuous and discrete variables, which guarantee that the hybrid system remains in the "safe subset" of the reachable set. We discuss issues related to computing solutions to Hamilton-Jacobi equations. Throughout, we demonstrate out techniques on examples of hybrid automata modeling aircraft conflict resolution, autopilot flight mode switching, and vehicle collision avoidance.

571 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.
Abstract: This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects on the speed of consensus algorithms and cooperative control of multivehicle formations

9,715 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations